518 research outputs found

    Analysis of reservoir triggered seismicity. Case of Pirris reservoir (Costa Rica)

    Full text link
    [EN] The presented work is the result of a new collaboration between the Costa Rican Institute of Electricity (ICE) and the Technical University of Madrid (UPM) for the investigation of induced seismicity issues. Triggered seismicity associated with the filling of artificial water reservoirs is known since six decades ago. However, it is the case of triggered seismicity more complicated to model their effects. More than 100 cases of reservoir induced/triggered seismicity have been collected around the world and this issue continues today being a research topic of great importance. Indeed, new developments and contributions are constantly being made with the aim of achieve a better understanding of their characteristics and genesis. The main aim of the presented work is to analyze the spatial-temporal evolution of the seismic events recorded around the Pirrís reservoir before, during and after its filled. With the analysis of the seismic events we try to know and control the influence of the reservoir operations on the seismic activity of the area. Different parameters are studied, using methodologies proposed by different authors, in order to explain the possible effects of reservoir filling in changing the stress conditions in the environment and to detect any possible anomaly. Moreover, some analysis have been done in order to find a possible correlation between the water level in the reservoir and the evolution of the seismic activity recorded. Overall, the results of this study will provide important conclusions about the sensitivity of certain parameters to evaluate and model the effects of filling reservoirs on the seismic activity in the vicinity and we will present the spatial-temporal evolution of the seismicity associated with the specific case of the Pirrís hydraulic project.[ES] El trabajo presentado es el resultado de una colaboración iniciada entre el Instituto Costarricense de Electricidad (ICE) y la Universidad Politécnica de Madrid (UPM) para la investigación de la sismicidad inducida por causas antrópicas. La sismicidad disparada por el llenado de grandes embalses es un hecho conocido desde hace décadas, siendo uno de los tipos de sismicidad más complejos a la hora de modelizar sus efectos. Hasta ahora, más de 100 casos de sismicidad disparada por embalses han sido recogidos en todo el mundo, por lo que el tema de la sismicidad inducida se ha convertido en una línea de investigación cada vez más importante y estudiada. El objetivo principal de este trabajo se centra en analizar la evolución espacio-temporal de la sismicidad registrada en los alrededores del embalse de Pirrís (Costa Rica) en tres fases: antes, durante y después de su llenado. Con dicho análisis se pretende conocer y controlar la influencia que las operaciones efectuadas en el embalse tienen en la actividad sísmica de la zona. Se han estudiado diferentes parámetros sísmicos y se ha analizado su variación en el tiempo (diferenciando entre las tres fases temporales citadas con el objetivo final de explicar los posibles efectos que el llenado del embalse puede tener en las condiciones de esfuerzos en el entorno. Además, se incluye un primer análisis cualitativo para identificar la posible correlación entre las variaciones del nivel de agua en el embalse y la evolución de la actividad sísmica registrada. En este trabajo se presenta un detallado análisis de la evolución espacio-temporal de la sismicidad asociada con el caso específico del proyecto hidráulico Pirrís. En general, los resultados presentados (aunque todavía provisionales) proporcionan una idea sobre la sensibilidad de ciertos parámetros para evaluar y modelar los efectos del llenado de embalses sobre la actividad sísmica del entorno.Ruiz Barajas, S.; Alvarado, GE.; Benito Oterino, B.; Climent, Á. (2017). Análisis de sismicidad asociada al llenado de embalses. Caso del centro de producción de Pirrís (Costa Rica). En Primer Congreso en Ingeniería Geomática. Libro de actas. Editorial Universitat Politècnica de València. 89-100. https://doi.org/10.4995/CIGeo2017.2017.6666OCS8910

    How new fault data and models affect seismic hazard results? Examples from southeast Spain

    Get PDF
    In this work, we study the impact of different approaches to incorporate faults in a seismic hazard assessment analysis. Firstly, we consider two different methods to distribute the seismicity of the study area into faults and area-sources, based on magnitude partitioning and on moment rate distribution. We use two recurrence models to characterize fault activity: the characteristic earthquake model and the modified Gutenberg-Richter exponential frequency-magnitude distribution. An application of the work is developed in the region of Murcia (southeastern Spain), due to the availability of fault data and because is one of the areas in Spain with higher seismic hazard. The parameters used to model fault sources are derived from paleoseismological and field studies obtained from the literature and online repositories. Additionally, for some significant faults only, geodetically-derived slip rates are used to compute recurrence periods. The results of all the seismic hazard computations carried out using different models and data are represented in maps of expected peak ground accelerations for a return period of 475 years. Maps of coefficients of variation are presented to constraint the variability of the end-results to different input models and values. Additionally, the different hazard maps obtained in this study are compared with the seismic hazard maps obtained in previous work for the entire Spanish territory and more specifically for the region of Murcia. This work is developed in the context of the MERISUR project (ref. CGL2013-40492-R), with funding from the Spanish Ministry of Economy and Competitiveness

    Methodology for an effective risk assessment of urban areas: progress and first results of the merisur project

    Get PDF
    The progress and results the MERISUR, Methodology for an Effective RISk assessment of URban areas, are presented. This project aims at developing an effective methodology for urban seismic risk assessment that provides solutions to some deficiencies detected after recent damaging events worldwide, including risk mitigation actions based on benefit/cost ratios. In a fisrt stage, the hazard and vulnerability models are developed and improved. A procedure to determine the hazard-controlling seismogenic fault, contsistent with different probability levels, is established. Methods to include active faults as individual sources and to consider near filed effects that significantly amplify ground motions are proposed. A more complete description of seismic vulnerability encompassing structural, non-structural components is accomplished. Vulnerability modifiers to incorporate effects or urban parameters on vulnerability classes are also quantified. A distinction is also made between damage to structural and non-structural building elements. For this purpose, a pushover analysis is specifically carried out to model building response and damage trends on non-structural elements. This gives the primary damage. In addition, the area covered by the resulting debris is also estimated both in inner spaces (within the building) and in the outer space (public roads and streets). In this way, a volume of debris will be associated to each area unit of the city, and the potential damage to persons and elements exposed, such as urban furniture and vehicles, will be assessed. This constitutes the secondary damage. A static level of occupation (building, urban furniture, etc.) and a dynamic level of occupation (persons, vehicles) will be assigned to each area unit of the city, hereby defining the exposure in time and space. Earthquake losses related to primary damage of building components and to secondary damage (such as urban furniture and vehicles) will be also assessed. Cost/benefit ratios between ex ante risk mitigation measurements will be developed in order to decide whether risk transfer or risk retention is preferable for different risk scenarios. This analysis will confer effectiveness to the results of a seismic risk study. Overall, the estimate of earthquake losses and cost/benefit ratios are topics with little presence in the scientific literature concerning damaging earthquakes in Spain. Thus, the results of this study will provide effective solutions to the challenge to society tackled in this proposal

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore