82 research outputs found

    Suppressor of Cytokine Signaling 3 in Macrophages Prevents Exacerbated Interleukin-6-Dependent Arginase-1 Activity and Early Permissiveness to Experimental Tuberculosis

    Get PDF
    Suppressor of cytokine signaling 3 (SOCS3) is a feedback inhibitor of interleukin (IL)-6 signaling in macrophages. In the absence of this molecule, macrophages become extremely prone to an IL-6-dependent expression of arginase-1 (Arg1) and nitric oxide synthase (NOS)2, the prototype markers for alternative or classical macrophage activation, respectively. Because both enzymes are antipodean macrophage effector molecules in Mycobacterium tuberculosis (Mtb) infection, we assessed the relevance of SOCS3 for macrophage activation during experimental tuberculosis using macrophage-specific SOCS3-deficient (LysMcreSOCS3loxP/loxP) mice. Aerosol infection of LysMcreSOCS3loxP/loxP mice resulted in remarkably higher bacterial loads in infected lungs and exacerbated pulmonary inflammation. This increased susceptibility to Mtb infection was accompanied by enhanced levels of both classical and alternative macrophage activation. However, high Arg1 expression preceded the increased induction of NOS2 and at early time points of infection mycobacteria were mostly found in cells positive for Arg1. This sequential activation of Arg1 and NOS2 expression in LysMcreSOCS3loxP/loxP mice appears to favor the initial replication of Mtb particularly in Arg1-positive cells. Neutralization of IL-6 in Mtb-infected LysMcreSOCS3loxP/loxP mice reduced arginase activity and restored control of mycobacterial replication in LysMcreSOCS3loxP/loxP mice. Our data reveal an unexpected role of SOCS3 during experimental TB: macrophage SOCS3 restrains early expression of Arg1 and helps limit Mtb replication in resident lung macrophages, thereby limiting the growth of mycobacteria. Together, SOCS3 keeps IL-6-dependent divergent macrophage responses such as Nos2 and Arg1 expression under control and safeguard protective macrophage effector mechanisms

    Evidence for models of diagnostic service provision in the community: literature mapping exercise and focused rapid reviews

    Get PDF
    Background Current NHS policy favours the expansion of diagnostic testing services in community and primary care settings. Objectives Our objectives were to identify current models of community diagnostic services in the UK and internationally and to assess the evidence for quality, safety and clinical effectiveness of such services. We were also interested in whether or not there is any evidence to support a broader range of diagnostic tests being provided in the community. Review methods We performed an initial broad literature mapping exercise to assess the quantity and nature of the published research evidence. The results were used to inform selection of three areas for investigation in more detail. We chose to perform focused reviews on logistics of diagnostic modalities in primary care (because the relevant issues differ widely between different types of test); diagnostic ultrasound (a key diagnostic technology affected by developments in equipment); and a diagnostic pathway (assessment of breathlessness) typically delivered wholly or partly in primary care/community settings. Databases and other sources searched, and search dates, were decided individually for each review. Quantitative and qualitative systematic reviews and primary studies of any design were eligible for inclusion. Results We identified seven main models of service that are delivered in primary care/community settings and in most cases with the possible involvement of community/primary care staff. Not all of these models are relevant to all types of diagnostic test. Overall, the evidence base for community- and primary care-based diagnostic services was limited, with very few controlled studies comparing different models of service. We found evidence from different settings that these services can reduce referrals to secondary care and allow more patients to be managed in primary care, but the quality of the research was generally poor. Evidence on the quality (including diagnostic accuracy and appropriateness of test ordering) and safety of such services was mixed. Conclusions In the absence of clear evidence of superior clinical effectiveness and cost-effectiveness, the expansion of community-based services appears to be driven by other factors. These include policies to encourage moving services out of hospitals; the promise of reduced waiting times for diagnosis; the availability of a wider range of suitable tests and/or cheaper, more user-friendly equipment; and the ability of commercial providers to bid for NHS contracts. However, service development also faces a number of barriers, including issues related to staffing, training, governance and quality control. Limitations We have not attempted to cover all types of diagnostic technology in equal depth. Time and staff resources constrained our ability to carry out review processes in duplicate. Research in this field is limited by the difficulty of obtaining, from publicly available sources, up-to-date information about what models of service are commissioned, where and from which providers. Future work There is a need for research to compare the outcomes of different service models using robust study designs. Comparisons of ‘true’ community-based services with secondary care-based open-access services and rapid access clinics would be particularly valuable. There are specific needs for economic evaluations and for studies that incorporate effects on the wider health system. There appears to be no easy way of identifying what services are being commissioned from whom and keeping up with local evaluations of new services, suggesting a need to improve the availability of information in this area. Funding The National Institute for Health Research Health Services and Delivery Research programme

    Differing Outcome of Experimental Autoimmune Encephalitis in Macrophage/Neutrophil- and T Cell-Specific gp130-Deficient Mice

    No full text
    gp130 cytokines are differentially involved in regulating the T helper (H) 17-driven pathogenesis of experimental autoimmune encephalomyelitis (EAE), the animal model of human multiple sclerosis. Interleukin (IL)-6 directly promotes the development of TH17 cells through the gp130/IL-6R complex. By contrast, IL-27 has been shown to suppress a TH17 immune response by gp130/IL-27R-alpha (α) receptor ligation. The IL-27-dependent regulation of a TH17 development could be mediated on the level of CD4 T cells. However, because IL-27 also suppresses the secretion of the TH17-driving cytokines IL-6 and IL-12/23p40 in accessory cells, TH17 immune responses may also be controlled by IL-27 on the level of macrophages and/or neutrophils. To analyze these opposing effects of gp130 engagement on the pathogenesis of EAE, we immunized CD4+ T cell-specific gp130-deficient (CD4creposgp130loxP/loxP) and macrophage/neutrophil-specific gp130-deficient (LysMcreposgp130loxP/loxP) mice with the myelin-oligodendrocyte-glycoprotein peptide MOG35–55. Whereas inflammatory immune responses, TH17 differentiation, and pathology in CD4creposgp130loxP/loxP mice were mitigated, disease progression was eventually enhanced in LysMcreposgp130loxP/loxP mice. Exacerbated disease in MOG35–55-immunized LysMcreposgp130loxP/loxP mice was associated with an elevated development of TH17 cells and increased infiltration of the central nervous system with leukocytes indicating a suppressive role of macrophage/neutrophil-gp130. To further prove IL-6 to be responsible for the control of inflammation during EAE through gp130 on macrophages/neutrophils, we immunized LysMcreposIL-6RloxP/loxP mice. In contrast to LysMcreposgp130loxP/loxP mice, neuropathology in MOG35–55-immunized macrophage/neutrophil-specific IL-6R-deficient mice was not enhanced indicating that the alleviation of EAE through macrophage/neutrophil-gp130 is mediated independently of IL-6. Together, this different pathology in macrophage/neutrophil- and CD4 T cell-specific gp130-deficient mice suggests that gp130 cytokines modulate TH17 inflammation differentially by targeting distinct cell types

    image_1_Differing Outcome of Experimental Autoimmune Encephalitis in Macrophage/Neutrophil- and T Cell-Specific gp130-Deficient Mice.tif

    No full text
    <p>gp130 cytokines are differentially involved in regulating the T helper (H) 17-driven pathogenesis of experimental autoimmune encephalomyelitis (EAE), the animal model of human multiple sclerosis. Interleukin (IL)-6 directly promotes the development of TH17 cells through the gp130/IL-6R complex. By contrast, IL-27 has been shown to suppress a TH17 immune response by gp130/IL-27R-alpha (α) receptor ligation. The IL-27-dependent regulation of a TH17 development could be mediated on the level of CD4 T cells. However, because IL-27 also suppresses the secretion of the TH17-driving cytokines IL-6 and IL-12/23p40 in accessory cells, TH17 immune responses may also be controlled by IL-27 on the level of macrophages and/or neutrophils. To analyze these opposing effects of gp130 engagement on the pathogenesis of EAE, we immunized CD4<sup>+</sup> T cell-specific gp130-deficient (CD4cre<sup>pos</sup>gp130<sup>loxP/loxP</sup>) and macrophage/neutrophil-specific gp130-deficient (LysMcre<sup>pos</sup>gp130<sup>loxP/loxP</sup>) mice with the myelin-oligodendrocyte-glycoprotein peptide MOG<sub>35–55</sub>. Whereas inflammatory immune responses, TH17 differentiation, and pathology in CD4cre<sup>pos</sup>gp130<sup>loxP/loxP</sup> mice were mitigated, disease progression was eventually enhanced in LysMcre<sup>pos</sup>gp130<sup>loxP/loxP</sup> mice. Exacerbated disease in MOG<sub>35–55</sub>-immunized LysMcre<sup>pos</sup>gp130<sup>loxP/loxP</sup> mice was associated with an elevated development of TH17 cells and increased infiltration of the central nervous system with leukocytes indicating a suppressive role of macrophage/neutrophil-gp130. To further prove IL-6 to be responsible for the control of inflammation during EAE through gp130 on macrophages/neutrophils, we immunized LysMcre<sup>pos</sup>IL-6R<sup>loxP/loxP</sup> mice. In contrast to LysMcre<sup>pos</sup>gp130<sup>loxP/loxP</sup> mice, neuropathology in MOG<sub>35–55</sub>-immunized macrophage/neutrophil-specific IL-6R-deficient mice was not enhanced indicating that the alleviation of EAE through macrophage/neutrophil-gp130 is mediated independently of IL-6. Together, this different pathology in macrophage/neutrophil- and CD4 T cell-specific gp130-deficient mice suggests that gp130 cytokines modulate TH17 inflammation differentially by targeting distinct cell types.</p
    • …
    corecore