50 research outputs found

    Connecting operation-choice problems by the variation principle: Sixth graders’ operational or deeper relational pathways

    Get PDF
    Many empirical studies documented students’ challenges with operation-choice problems, in particular for multiplication and division with rational numbers. The design principle of problem variation was suggested to overcome these challenges by engaging students in making connections between inverse operation-choice problems of multiplication and division, and between problems with natural numbers and fractions/decimals, but so far, this approach was hardly investigated empirically. In this study, we investigate 17 sixth graders’ modelling pathways through sets of operation-choice problems that are systematically designed according to the variation principle. In the qualitative analysis, we identify five pathways by which students solve the problems and sometimes connect them. While one pathway uses deep relational connections, others only draw superficial and operational connections and others stay with informal strategies without connecting them to formal operations.This study is supported by an FPU grant FPU19/02965 from Ministerio de Universidades (Spain) to Cristina Zorrilla under the supervision of Ceneida Fernández and Salvador Llinares. The analytic approach and the paper have been developed collectively by the first, second and last author during the first author’s research stay in Dortmund, Germany, with Susanne Prediger and Anna-Katharina Roos. This stay was funded by the Ministerio de Universidades (EST21/00333)

    Cross-sectional examination of 24-hour movement behaviours among 3-and 4-year-old children in urban and rural settings in low-income, middle-income and high-income countries : the SUNRISE study protocol

    Get PDF
    Introduction 24-hour movement behaviours (physical activity, sedentary behaviour and sleep) during the early years are associated with health and developmental outcomes, prompting the WHO to develop Global guidelines for physical activity, sedentary behaviour and sleep for children under 5 years of age. Prevalence data on 24-hour movement behaviours is lacking, particularly in low-income and middle-income countries (LMICs). This paper describes the development of the SUNRISE International Study of Movement Behaviours in the Early Years protocol, designed to address this gap. Methods and analysis SUNRISE is the first international cross-sectional study that aims to determine the proportion of 3- and 4-year-old children who meet the WHO Global guidelines. The study will assess if proportions differ by gender, urban/rural location and/or socioeconomic status. Executive function, motor skills and adiposity will be assessed and potential correlates of 24-hour movement behaviours examined. Pilot research from 24 countries (14 LMICs) informed the study design and protocol. Data are collected locally by research staff from partnering institutions who are trained throughout the research process. Piloting of all measures to determine protocol acceptability and feasibility was interrupted by COVID-19 but is nearing completion. At the time of publication 41 countries are participating in the SUNRISE study. Ethics and dissemination The SUNRISE protocol has received ethics approved from the University of Wollongong, Australia, and in each country by the applicable ethics committees. Approval is also sought from any relevant government departments or organisations. The results will inform global efforts to prevent childhood obesity and ensure young children reach their health and developmental potential. Findings on the correlates of movement behaviours can guide future interventions to improve the movement behaviours in culturally specific ways. Study findings will be disseminated via publications, conference presentations and may contribute to the development of local guidelines and public health interventions.Peer reviewe

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Twist exome capture allows for lower average sequence coverage in clinical exome sequencing

    Get PDF
    Background Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. Results We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. Conclusion We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore