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A B S T R A C T   

Many empirical studies documented students’ challenges with operation-choice problems, in 
particular for multiplication and division with rational numbers. The design principle of problem 
variation was suggested to overcome these challenges by engaging students in making connec
tions between inverse operation-choice problems of multiplication and division, and between 
problems with natural numbers and fractions/decimals, but so far, this approach was hardly 
investigated empirically. In this study, we investigate 17 sixth graders’ modelling pathways 
through sets of operation-choice problems that are systematically designed according to the 
variation principle. In the qualitative analysis, we identify five pathways by which students solve 
the problems and sometimes connect them. While one pathway uses deep relational connections, 
others only draw superficial and operational connections and others stay with informal strategies 
without connecting them to formal operations.   

1. Introduction 

Multiplication and division word problems have often been shown to be challenging for students as the choice of operations re
quires modelling decisions (Bell et al., 1984; Fischbein et al., 1985): Students are supposed to discover multiplicative structures in the 
problem situation, and on this base decide how to mathematize by a division or multiplication. For the same situation (e.g., 24 cookies 
structured into six boxes of four cookies each), the difficulty of these decisions depends on the problem structure, i.e., whether the total is 
unknown (multiplication problem structure), or the number of groups (quotitive problem structure) or the size of the groups (partitive 
problem structure; for a review, see Greer, 1992). Students can exploit the inverse relationship between the three problem structures 
when the problems belong to the same situation (ibid.). For students, the difficulty depends furthermore on the numbers involved 
(Zorrilla et al., 2023): problems are mastered more frequently with natural numbers than with rational numbers (e.g., Bell et al., 1981; 
De Corte et al., 1988; Greer, 1992) where many students refer to overgeneralizations (such as multiplication makes bigger; e.g., Bell 
et al., 1984; Fischbein et al., 1985) rather than to the invariance of the problem structures (Levain, 1992; Prediger, 2008; Zorrilla, 
Fernández et al., 2022). 

To overcome these challenges, authors have suggested to engage students in making two kinds of connections: Connecting inverse 
problems for the same multiplicative situations (i.e., the multiplication problem with its inverse partitive and quotitive division 
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problems; Downton, 2009, 2013; Fischbein et al., 1985) and connecting problems with natural numbers to problems with rational 
numbers (decimals or fractions; e.g., Levain, 1992; Zorrilla, Fernández et al., 2022). 

The variation principle (Bianshi in Chinese) is widely established in China as a design principle to engage students in making both 
kinds of connections through systematic problem variations, either in Chinese textbooks (Sun, 2011a, 2011b, 2019) or in teachers’ 
own practices (Han et al., 2017). But so far, students’ work initiated by the variation principle have not yet been investigated 
empirically in depth. 

In this paper, we contribute to reducing this research gap by pursuing the following empirical research question: How do sixth 
graders solve and connect operation-choice problems of multiplication and division when they participate in an instruction based on the variation 
principle? 

2. Theoretical background 

2.1. Typical challenges with operation-choice problems for multiplication and division 

Students’ challenges of the choice of operations for word problems were identified in many empirical studies in the 1980 s and 
1990 s (overview in Greer, 1992). These studies discerned different factors of problem difficulty, among them the structure of the 
problems, number size and number types (Bell et al., 1981, 1984; Fischbein et al., 1985; Harel et al., 1994), types of context situations, 
language features of the problem texts (Abedi & Lord, 2001) and others. Among these factors, we focus on problem structure and 
number types. 

The most relevant problem structures have already been distinguished by Fischbein et al. (1985): For the same situation being 
structured in equal groups, multiplication problems ask for the total quantity, partitive division problems ask for the size of the groups 
(e.g., in situations of fair sharing) and quotitive problems ask for the number of groups (e.g., in measurement problems: How often does 
the 5 fit into the 15?). Nevertheless, instead of drawing connections of inverse relationships (Sun, 2011a, 2011b), students treat the 
three problem structures in isolation, presenting difficulties in identifying the multiplicative structure in division problems (Neuman, 
1999). 

The number types have often been reported to form a second important factor for students’ choice of operations: Many students who 
successfully choose the operations for natural numbers do not succeed for decimal numbers (Bell et al., 1981, 1984, 1989; Fischbein 
et al., 1985) or for fractions (Harel et al., 1994; Prediger, 2008). 

In this paper, we will disentangle the underlying cognitive processes (i.e., students’ mental actions) while solving operation-choice 
problems in modelling cycles between the multiple (mental) representations involved (see Fig. 1 adapted from Vom Hofe and Blum, 
2016): When students are confronted with a word problem text (in textual representation), they are expected to structure the un
derlying situation in a (mental or graphical) contextual representation (sometimes in episodic form, sometimes graphically), therefrom 
mathematize by choosing an operation (into symbolic representation), calculate the result (in numerical representation), interpret the 
operation and the result in the situation structure and validate it in the problem situation. 

In the step from the situation structure to the operation choice, students’ modelling cycles can draw upon mental models for 
example, division in the quotitive or partitive model (Fischbein et al., 1985; Greer, 1992). Ideally, they draw upon the intended mental 
model in their processes of mathematizing and interpreting, for example multiplication as counting in groups, multiplication as scaling 
up, multiplication as Cartesian product, etc. (for further details see Greer, 1992; Prediger, 2008). 

In contrast, when students make inaccurate operation choices, different steps in the modelling cycle can be involved. Reading 
comprehension can notably influence the accuracy of the situation structure to be constructed (Leiss et al., 2019). Indeed, a limited 
reading comprehension can lead to a deviant mental representation (Dröse & Prediger, 2020; Verschaffel et al., 2000) of the problem 
situation or suspended structuring by immediate direct translations (Hegarty et al., 1995). An inaccurate mental contextual represen
tation due to overgeneralizations derived from natural number properties and their operations can lead to wrong mathematizing 
(Fischbein et al., 1985), and superficial interpreting and validating processes can hinder students from recognizing their errors (Ver
schaffel et al., 2000). 

Fig. 1. Modelling cycle with five cognitive processes (structuring, mathematizing, calculating, interpreting, validating) while solving a quotitive 
division problem. 
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In particular, when rational numbers below 1 are involved, the suspension of the intended mental models by idiosyncratic implicit 
models have often been documented (e.g., multiplication makes bigger which is correct for natural factors but not for rational factors 
below 1, cf. Bell et al., 1984; Fischbein et al., 1985; Levain, 1992). These overgeneralizations are derived from the properties of natural 
numbers and their operations. The interference of natural numbers knowledge on rational numbers learning has been documented in 
the literature as the phenomenon of natural number bias (e.g., González-Forte et al., 2020; Van Hoof et al., 2015) or conceptual change 
(Prediger, 2008). As a reason for students’ reluctant use of the invariance of problem structures across number types and suspension of 
mental models, researchers have identified epistemological obstacles indicating that some of the mental models have to be adapted in 
the transition from natural to rational numbers (Greer, 1992; Prediger, 2008): Whereas division can still be interpreted in quotitive 
problem structures (We cut six cakes in halves, how many halves do we get?), the mental model of division as equal sharing (partitive 
structure) does not work for fractions or decimals below 1 (We share the six cakes with half a person?). Also, multiplication needs to be 
re-interpreted in the transition from natural to rational numbers, e.g., from counting in groups (3 groups of 2) to taking parts of a whole 
(2/3 of 3) or of a part (2/3 of 3/4; see Prediger, 2008; Taber, 2007). 

2.2. Instructional approaches suggested for overcoming challenges with operation-choice problems 

Although students’ challenges with operation-choice problems have been widely documented for forty years (since Bell et al., 
1981), there are still only few studies investigating instructional approaches for overcoming these challenges, as Sun (2019) and Sun 
et al. (2019) problematized. Although nearly all researchers came to the conclusions that students need to learn to make more con
nections, this claim has hardly been empirically explored, so far. 

For developing students’ mental models of partitive and quotitive division for natural numbers, various researchers have shown 
that students can see and use the inverse relationships between the three problem structures even before the relationship is system
atically taught (Correa et al., 1998; Downton, 2009), so this intuitive inverse relationship should be used to develop students’ mental 
models for division. Downton (2013) has provided empirical evidence that when the inverse relationships between division and 
multiplication is understood by students, it strengthens their ability to correctly choose operations for natural numbers, perceiving the 
role of each number in the operation. 

For the transition of natural to rational numbers, already Bell et al. (1981) conducted first teaching experiments with 
15–16-year-old students to connect the operations with decimals to the operations with natural numbers by varying the problems. 
Zazkis et al. (2008) also addressed this transition after observing that from secondary school students to pre-service elementary school 
teachers there were difficulties in solving the following quotitive division problem “A pound of fancy grain cost[s] $1.68, how much 
grain can you buy for $0.50?” (p. 136). Zazkis et al. (2008) turned to numerical variation to support similarity recognition to extend the 
general multiplicative structure. Thus, from the original problem, they modified only 1.68 (the cost per pound of grain) and 0.50 (the 
total cost) respectively to: 2 and 6, in the second problem; 2 and 20, in the third problem; 2 and 0.50, in the fourth problem… These 
numerical and other consecutive variations would allow solving the originally proposed problem (Zazkis et al., 2008). Most other 
researchers only made suggestions for the aforementioned transition without investigating the suggested instructional approach (e.g., 
Fischbein et al., 1985; Levain, 1992). 

An instructional approach for engaging students in making connections draws upon the design principle of problem variation, 
called variation theory of learning in Sweden (Marton, 2015), and Bianshi teaching in the Chinese tradition (Cai & Nie, 2007; Sun, 
2019). While variation plays a leading role in both traditions, they differ in their focus: The focus is on differences (variation) in the 
Swedish tradition and on what remains invariant in the Chinese tradition (Pang et al., 2017). 

In the variation theory of learning, task design by the teacher requires attention to the object of learning and the way in which the 
student intends to learn (specific keys and ways of seeing; Marton et al., 2004). On the one hand, “discerning the object of learning 
amounts to discerning its critical aspects” (Marton & Pang, 2006, p. 193). These critical aspects are the specific keys necessary for the 
acquisition of the object of learning (Marton, 2015). Thus, when solving an operation-choice problem, the solver must have the ability 
to discern the quantities that make it up and the relationships between them (Pang et al., 2017). On the other hand, ways of seeing 
present a fundamental role in the discernment of these specific keys. Marton (2015) identified patterns of (in)variation: contrast, 
generalization, and fusion. Particularly, the pattern of generalization used in our study intends to separate in an object of learning the 
necessary aspects from the optional aspects by varying the last ones (Marton, 2015). Returning to the example of solving an 
operation-choice problem, generalization would take place keeping the relationships between quantities invariant (i.e., problem 
structure as a necessary aspect) while other aspects would vary (e.g., context as an optional aspect). 

In Bianshi teaching, variation also plays a relevant role. Although variation is associated with change, as Huang et al. (2006) state in 
recalling an ancient Chinese saying, variation is about “remaining essentially the same despite all apparent changes” (p. 270). Three 
widespread activities highlight Chinese mathematics education among teachers (e.g., Cai & Nie, 2007; Sun, 2019): one problem, 
multiple changes (OPMC); one problem, multiple solution strategies (OPMS); and multiple problems, one solution strategy (MPOS). 

Firstly, OPMC consists of presenting an initial problem and, once it is solved, presenting and solving variations of the initial 
problem. In her insightful analysis of Chinese textbooks, Sun (2011a) (2011b) unpacks possible examples for making connections for 
multiplication and division, within one number type and between number types, without providing empirical insights. An example 
within the same number type is a situation with identical quantities (300 g of candies in 3 boxes of 100 g; Sun, 2011b). The multi
plication problem is designed “Each box of fruit candies weighs 100 g. How much do the three boxes weigh?” (p. 75) and also its 
corresponding partitive division problem and quotitive division problem. An example between number types is using the situation 
3/10 of a kilogram of candy in 3 boxes of 1/10 of a kilogram, changing the numbers from the previous situation (Sun, 2011b). 

Secondly, OPMS consists of presenting a problem and providing the opportunity to solve it using different strategies to promote 
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flexible ways of thinking in choosing/designing a strategy to solve the problem. Sun (2019) illustrates how a multiplication problem 
can be solved by a counting strategy based on graphical representation, repeated addition, or the multiplication formal operation. 

Finally, MPOS consists of using the same strategy to solve a set of problems of identical structure. Sun (2019) illustrates the use of 
the multiplication formal operation in different multiplication problems in the following activity: “How many liters are there in three 
barrels if each barrel is 12 L? How many liters are there in 1/2 of a barrel? How many liters are there in 1/4 of a barrel?” (p. 116). Thus, 
OPMC, OPMS, and MPOS provide the opportunity to perceive structures and relationships by making connections (Sun, 2011a). 

The variation principle has also been applied for other typical challenges of word problems, for example, Dröse and Prediger (2020) 
have used it for raising students’ language awareness by engaging them in connecting two word problems which vary only in one 
subtle language feature (e.g., “Each penguin eats 5 fishes” vs. “Each penguin eats 5 fishes more”). The controlled trial provided 
quantitative evidence for the overall efficacy of these language variations for enhancing students’ success in structuring the situations 
(Dröse & Prediger, 2021). However, the qualitative in-depth investigation of students’ pathways while working with the linguistically 
varied word problems also identified important shortcomings: Only some students reflected deeply about the impact of the linguistic 
variation to the situation structure in view, whereas others made only superficial connections which tuned out to be less productive for 
their learning (Dröse & Prediger, 2020). 

Summing up, we still agree to Sun (2019) that although students’ challenges are well-documented and the variation principle is 
already used for engaging students in making connections in textbooks (Sun, 2011a, 2011b, 2019) and teacher professional devel
opment (Han et al., 2017; Runesson, 2005), there is still a research gap in empirical studies providing in-depth insights into students’ 
work. 

In the current study, we develop a conceptual framework for an in-depth analysis in order to investigate students’ cognitive 
processes for operation-choice problems, when varying the problem structure and the numbers involved. 

3. Conceptual framework of this paper 

For the design of the varied problem sets (instruction), we follow the Bianshi approach. To investigate students’ cognitive processes 
while working in the varied problem sets, we outline a conceptual framework that allow us to unpack the intended modelling pathways 
in the instruction (i.e., the sequence of cognitive processes intended by the design of the tasks). 

3.1. Framework for designing the varied problem sets 

The first author and other colleagues (Zorrilla, Ivars et al., 2022) have developed an instruction based on the variation principle 
(Cai & Nie, 2007; Gu et al., 2004) for both kinds of connections in problem-solving processes of operation-choice word problems: (a) 
The connection between inverse relationships of multiplication, partitive division and quotitive division problems within the same 
number type, and (b) the connections across natural numbers and proper and improper fractions within the same structure. 
Considering these two connections, three variation conditions were combined in the instructional design. 

In a first variation condition (Table 1), the design followed Chinese textbooks (Sun, 2011a, 2011b, 2019) for focusing students’ 
attention to the inverse relationships: In the variation format of one problem – multiple changes (OPMC), each problem set was con
structed by three problems with the same situation but different problem structures, varied with respect to the unknown (Greer, 1992) 
into a multiplication problem, partitive division problem and quotitive division problem. By discerning that the situation structure and 
the numbers are the same and only the question for the unknown varies, students were expected to discover and use the inverse re
lationships. Five varied problem sets were designed and the three problems were presented in different orders. 

A second variation condition is documented in Table 2: Across the five varied problem sets, also the involved number types were 
systematically varied, starting with natural numbers in Problem Set 1, one proper fraction and two natural numbers in Problem Set 2, 
one improper fraction and two natural numbers in Problem Set 3, two proper fractions and a natural number in Problem Set 4 and two 
improper fractions and a natural number in Problem Set 5. By this variation, we intended to promote students’ transition from natural 
numbers to proper fractions and improper fractions, as in Chinese textbooks (Sun, 2019). The variation format of one problem – multiple 
changes (OPMC) was crucial across problem sets since we keep the structure of the problem (same unknown) and we change the 
numbers. Furthermore, the variation format multiple problems – one solution strategy (MPOS) aimed at inviting students to continue to 
choose the same operation with fractions (Cai & Nie, 2007; Gu et al., 2004). 

A third variation condition aims at supporting students’ “disregard” of the context and rather tries to make students switch to 
generalizing activities independent of the given context: Between the Problem Sets 1–2, 2–3 and after Problem Set 5, additional extra 

Table 1 
Problem sets varying the problems’ unknown.  

Multiplication problem Partitive division problem Quotitive division problem 

We have [number of groups] 
packages. 

We have [number of groups] packages. We have some packages. 

Each package contains 
[quantity per group] kilos. 

All the packages contain the same number of kilos. We have 
[total quantity] kilos in total. 

Each package contains [quantity per group] kilos. We have 
[total quantity] kilos in total. 

How many kilos do we have in 
total? 

How many kilos does each 
package have? 

How many packages do we have?  
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problems (E1.4-E1.6, E5.4-E5.6) were included that used other context situations and not the same numbers in the three problems. This 
variation of context situations aimed at encouraging students to extrapolate the discovered structures to other contexts and, thus, 
generalize the structure (Marton, 2015). 

Moreover, students work on these problems in a format of one problem – multiple solution strategies (OPMS). Students worked in small 
groups on each problem set without any specific intervention from the teacher. Then, the teacher shared and discussed different 
students’ strategies in the whole class. During these group discussions, references to the strategies used in previous problems were also 
made, promoting MPOS and, by connecting the structures of different problems, OPMC. Since Problem Set 2 was students’ first 
encounter with multiplication and division with fractions, the teachers encouraged the students in the whole class discussion to work 
with informal solution strategies such as counting in units to connect these strategies with the formalized operations. 

3.2. Framework for investigating students’ modelling pathways 

For empirically investigating students’ modelling pathways, modelling cycles were developed as conceptual frameworks by which 
the intermediate steps (problem text, situation structure, chosen operation, result) and the cognitive processes of modelling (struc
turing, mathematizing, calculating, interpreting, validating) can be articulated. 

We adapted the modelling cycle from Fig. 1 (an intended modelling pathway in our study) to capture also the cognitive processes 
involved in the two types of connections for the transition of meanings for multiplication and division from natural numbers to 
fractions and decimals (connections across number types, connections between inverse relationships, similar to Zazkis et al., 2008). To 

Table 2 
Complete composition of five problem sets designed with three conditions of variations: variations of the unknown (vertically within the column, 2.2, 
2.1 show order of presented problems, using “:” for partitive division and “÷” for quotitive division), variations of involved number types (horizontal 
change across the columns), and variations of context situations and non-matching numbers (in extra problems marked by E1.4).   

Problem Set 1 Problem Set 2 Problem Set 3 Problem Set 4 Problem Set 5 

Same situation, other unknowns 3 packages of 
4 kg are 12 kg 

8 packages of 
1
2 

kg are 4 kg 
5

1
2 

packages of 

2 kg are 11 kg 

8 packages of 
1
10 

kg are 
4
5 

kg 
2

1
4 

packages of 

2 kg are 4
1
2 

kg 

Multiplication problem 1.1M 3 × 4 = ? 2.3M 8 ×
1
2 
= ? 3.2M 5

1
2 
× 2 = ? 4.1M 8 ×

1
10 

= ? 5.1M 2
1
4 
× 2 = ? 

Partitive division problem 1.2P 12 : 3 = ? 2.1P 4 : 8 = ? 3.3P 11 : 5
1
2 

= ? 4.3P 
4
5 

: 8 = ? 5.2P 4
1
2 

: 2
1
4 
= ? 

Quotitive division problem 1.3Q 12 ÷ 4 = ? 2.2Q 4 ÷
1
2 
= ? 3.1Q 11 ÷ 2 = ? 4.2Q 

4
5 
÷

1
10 

= ? 5.3Q 4
1
2 
÷ 2 = ? 

Extra problems 
(other numbers and situations) 

E1.4M 8 × 2 = ? 
E1.5P 20 : 5 = ? 
E1.6Q 24 ÷ 4 = ? 

E2.4P 2 : 20 = ? 

E2.5Q 2 ÷
1
4 
= ? 

E2.6M 10 ×
2
5 
= ?   

E5.4M 5
1
4 
× 3 = ? 

E5.5P 8
4
5 

: 2
1
5 
= ? 

E5.6Q 7
1
2 
÷ 2 = ?  

Fig. 2. Intended emergent modelling pathway with cognitive processes while extending their mental model of multiplication as counting in units 
from natural numbers to the multiplication of a natural number with a fraction supported by the variation format one problem – multiple solution 
strategies (OPMS). 
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distinguish these meaning-making processes from modelling with already learned meanings, we call these cognitive processes emerging 
modelling processes, borrowing the term from the tradition of Realistic Mathematics Education (Gravemeijer, 2007). While there are 
distinct differences, our variation approach for emergent modelling shares with Realistic Mathematics Education the key idea that 
(here, systematically varied) imaginable context problems can support students’ construction or extension of meanings and draws 
upon similar processes as modelling. In our instruction, students are encouraged to draw upon informal strategies and connect them to 
the newly emerging meanings of operations for fractions and decimals (see also Empson & Levi, 2011). In this way, we can articulate 
the commonalities and differences between (intended and enacted) modelling pathways with operations for which meanings are already 
learned and emergent modellings through which the meanings are to be learned. 

Fig. 2 shows an example of an intended emergent modelling pathway for students who do not yet know meanings of the multi
plication of a natural number with a fraction. When solving Multiplication Problem 4.1M, they might draw upon informal strategies of 
counting tenths, and only after that, they realize that this informal strategy corresponds to counting in units of tenths (which they 
know) and this corresponds to a multiplication, when they (perhaps with the help of the teacher) connect their informal strategies to 
the established mental model of multiplication as counting in units. In this emergent modelling step, they construct the meaning of 
multiplication of a natural number multiplied by a fraction by formalizing their informal strategy. 

More complex is the articulation of the intended emergent modelling pathways when students are invited to draw upon the inverse 
relationship between division and multiplication problems (the other connection in our instruction), as this requires to extent the 
conceptual framework to two problems at the same time. Fig. 3 shows an example of the intended emergent modelling pathway when 
students solve the Multiplication Problem 2.3M by connecting it to the Partitive Division Problem 2.1P. Students can start with 
modelling the Partitive Division Problem 2.1P by structuring the situation in the idea to share 4 kg among 8 packages. With the mental 
model of division as equal sharing, they can choose the division 4 : 8 and solve it by drawing upon their knowledge of fractions as parts 
of wholes, with the numerical result 1/2. This modelling process can then be used for solving Multiplication Problem 2.3M. For 
connecting both problems, students might realize that both problem texts refer to the same situation (8 times the same package of 1/ 
2 kg, so 4 kg in total), yet with another unknown. By discovering this commonality and the inverse relationship in the problem texts, 
they can mathematize the second problem (not by the mental model of multiplication as counting equal groups, but) by the mental 
model of multiplication as the inverse relationship to division. By this, they can arrive at the intended operation 8 × 1/2, perhaps 
extending multiplication to fractions for their first time. For the new operation just invented, they determine the result not by stan
dardized calculation rules, but by deriving it from the structured situation. 

Fig. 2 and Fig. 3 exemplify how the modelling cycle was adapted to provide a conceptual framework for describing some of the 
intended emergent modelling pathways in students’ work in our instruction considering the two connections developed. These 
intended (emergent) modelling pathways allow us to have a conceptual framework to empirically identify the enacted pathways 
followed by students when working on the varied problem sets. Thereby, we refine our research question with respect to the con
ceptual framework: 

What modelling pathways do sixth graders enact and articulate while solving operation-choice problems when these are designed in sys
tematically varied problem sets focused on the connection between inverse relationships of multiplication, partitive division and quotitive division 
problems within the same number type, and the connections across natural numbers and proper and improper fractions within the same 
structure? 

Fig. 3. Intended emergent modelling pathway by connecting varied problems for extending their mental model of multiplication as counting in 
units from natural numbers to multiplications of a natural number with a fraction, supported by problem variation in format one problem – multiple 
changes (OPMC). (Black arrows document the intended modelling pathway of the first problem 2.1P, grey arrow belong to the intended emergent 
modelling pathway while solving problem 2.3M). 
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4. Methodological framework 

4.1. Methods of data gathering and focus sample 

The instruction was conducted in three regular Grade 6 classes of Spanish Public Primary schools, with in total 61 students (11–12 
years old). Prior to the instruction, the students had been introduced to the part-whole meaning of fractions and to the addition, 
subtraction and multiplication algorithms for fractions and decimal numbers, and division algorithm for decimal numbers. In six 
sessions (of approximately 45 min each), small groups of 2–4 students worked collaboratively on the worksheets with problem sets 
(listed in Table 2), followed by whole-class discussions to explore and compare their solution strategies, encourage children to consider 
other strategies and connect informal strategies with the formal operations. The first author was in charge of the implementation of the 
sessions. 

For the in-depth analysis of students’ individual modelling pathways in view of this paper, we selected a focus sample of n = 17 
students who worked in six small groups. To ensure that all students had the same order of problem sets and the same learning op
portunities in whole-class discussions, the six groups were selected from the same class. We selected the most participatory and 
talkative small groups to gain insights into their thinking. Other groups were succeeding equally well, but with less explicit cooperation 
so that their pathways can be only partially traced. 

In total, the focus data corpus for the current paper comprises students’ worksheets of all 24 problems listed in Table 2 and the 
audio-recordings of the six sessions 45 min) from six groups (1620 min of audio-recorded small group work on these problems). 
Although students worked in groups, the analysis, in this paper, focused on what each student articulated in the small group 
communication. 

4.2. Method of data analysis 

In order to infer the students’ enacted modelling pathways (i.e., the sequence of cognitive processes really initiated in students’ 
work with the tasks), audio-recordings of the six groups were transcribed and analyzed in four steps: 

Step 1: Deductive coding of the addressed representations. Each of the students’ utterances was coded with respect to the 
implicitly or explicitly addressed representation: the textual representation of the problem text, the mental contextual or graphical rep
resentation of the situation structure, the symbolic representation of the chosen or constructed operation and the numerical representation 
of the result. Additionally, we coded when students made implicit or explicit reference to other problems (of the same problem set or of 
earlier problem sets). Utterances addressing more than one representation were double-coded or divided into parts of the utterance 
with unique codes. After coding, the turns of the utterances were located in a navigation space (see Fig. 4), a table that is organized in 
columns according to the addressed representation and in rows according to the chronology from top to bottom. 

Step 2: Deductive - Inductive coding of cognitive (emergent) subprocesses. To characterize the students’ subprocesses when 
changing or connecting representations, their utterances were segmented into sense-making units referring to the same ideas (while 
omitting interjections not carrying to the students’ work process). For these sense-making units, we started by deductively coding the 
cognitive processes (see Figs. 1–3) and inductively identifying the subprocesses informed by the processes (Mayring, 2015). Examples 
for the identified cognitive subprocesses are listed in Table 3. 

Step 3: Identifying pathways as chains of cognitive subprocesses across the navigation space. For the 17 students and 24 
problems, Step 1 and Step 2 resulted in 408 chains of cognitive subprocesses in particular cells across the navigation spaces that we call 
navigations. These navigations were then systematically compared with each other and classified into re-occurring patterns. In this 
way, we inductively identified re-occurring patterns of navigation that we conceptualize as enacted modelling pathways. This analysis 
revealed five enacted modelling pathways across the 408 analyzed problem-solving navigations. 

Step 4: Categorizing 408 navigations according to the students’ enacted modelling pathway. Having identified the five 
enacted modelling pathways, we were able to classify the complete data corpus of the focus sample. In the last table, we present the 

Fig. 4. Analysis of the students’ navigation space in Transcript E1.6Q-Group C (Tíscar, Lola, & Jose).  
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modelling pathways summarized across the problems. It allows us to study the variety of pathways for each task. 
For a subset of the data (about 50 % of the data) the analytic steps were intensively discussed by the first and second author until 

agreement was achieved. Critical cases were discussed also with the other authors until 100 % of agreement was achieved. Main point 
here was to understand the discrepancies and come to a consensus, if necessary, by sharpening the categories (Mayring, 2015). 

5. Empirical findings 

5.1. Enacted modelling pathways identified in the data corpus 

We identified five modelling pathways: Pathway of Direct Translation, Pathway of Contextualizing the Chosen Operation, Pathway 
of Informal Strategies, Pathway of Operational Connection and Pathway of Relational Connection. In this section, we illustrate each of 
these five modelling pathways by the analysis of one transcript. 

Table 3 
Examples of codes for students’ subprocesses.  

Cognitive processes Code for some cognitive 
subprocesses 

Explanation 

Structuring Contextualizing the data of the problem Assigning meaning to the problem number(s) within the contextual representation 
Reporting the mental contextual representation 
and/or graphical representation 

Structuring the problem text in a contextual representation and/or graphical 
representation 

Relating situation 
structures 

Relating the problems Naming a different problem without making clear what the relation to the problem 
is based on (context, numbers or mathematical structure) 

Referring to the context of the problems Naming a different problem referring to a relation based on the context 
Comparing the numbers of the problems Naming a different problem comparing the occurring numbers of the problems 
Connecting the mathematical structures of the 
problems 

Naming a different problem connecting their mathematical structures 

Mathematizing Symbolizing the context Representing relationships between quantities in a symbolic way 
Choosing an operation Naming the chosen operation to solve the problem 

Calculating Converting the symbolic representation Performing transformations within numerical representations: e.g., from mixed 
number to decimal number 

Stating result Naming the numerical result 
Interpreting Contextualizing the operation Interpreting the numbers and the operation according to the contextual 

representation (word problem text) 
Contextualizing the result Interpreting the result according to the contextual representation (word problem 

text) 
Validating Checking the result according to the number 

obtained from another problem 
Validating the result by comparing the numbers or the contextualized numbers 
with other word problem text  

Table 4 
Coded Transcript E1.6Q-Group C (Tíscar, Lola, & Jose).  

E1.6Q Quotitive 
Division Problem 

“A baker made 24 Easter cakes and packed them 
in boxes of 4 cakes, how many boxes did he need?” 

- 239 Students’ individual 
writing 

Tíscar  

(6 boxes) 

Jose  

(6 boxes of Easter cakes) 

Lola  

(6 boxes) 

Choosing an operation 
Stating result     

239 Tíscar: In Exercise 3 [Problem E1.6Q from Table 2], 
did you put 6? 

Stating result 

240 Jose: Yes.      

241 Tíscar: 24 divided by 4, right? Choosing an operation 
242 Lola: It’s just that it’s super easy, 24 divided by 4.  
243 Tíscar: That’s it.      

244 Jose: 6. Stating result 
245 Tíscar: Yes, it’s 6.   
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5.1.1. Pathway of direct translation: jump from text to symbolic-numerical representations 
Whereas the intended modelling pathway in Fig. 1 is assumed to go through the stage of a mental contextual representation of the 

situation structure, many students seem to jump immediately from the problem text to the symbolic and numerical representations. 
We exemplify this pathway by a transcript from Session 1 in which Group C compares their individual solutions for the Quotitive 

Division Problem E1.6Q. In their worksheets, all the three have individually written the division and minimally recontextualized the 
result 6 by “6 cajas” (Spanish for “six boxes”). Table 4 shows their individual writings, their conversation, and the coding of the 
cognitive subprocesses. In Fig. 4, the analysis of the students’ navigations in the navigation space is shown. 

The analysis reveals that the students’ conversation concentrates exclusively on the comparison of individual results and chosen 
operations in the numerical and symbolic representation. First, they compare the numbers they obtained as a result in their individual 
writing (Turns 239–240) and then they justify their result by naming the corresponding operation (Turns 241–243) that was chosen to 
obtain the result (Turns 244–245). 

A characteristic for this pathway is the predominant location of students’ cognitive subprocesses in the columns of the symbolic and 
numerical representation for finding and justifying the result, without addressing the other three columns in the navigation space (see 
Fig. 4). 

5.1.2. Pathway of contextualizing the chosen operation 
Closer to the intended modelling pathway from Fig. 1 is a second class of navigation that we summarized as the Pathway of 

Contextualizing the Chosen Operation. In this pathway, students (i) directly articulate the chosen operation, but they provide evidence of 
constructing a mental contextual representation from the problem text that allows them to contextualize the operation or (ii) construct 
a mental contextual representation from the problem text and then, choose the operation. 

We exemplify the case (i) by a transcript from Session 4 in which Pere (from Group E) works on the Multiplication Problem 4.1M 
(Table 5 and Fig. 5). 

Being confronted with the unknown problem asking for multiplying with a fraction, Pere converts the fraction into a decimal 
number (Turn 34), the number type in which he knows how to multiply. Moreover, he puts the obtained decimal number in the 
corresponding context (Turn 34) and stays in this context for applying appropriately the chosen operation (multiplication). Pere states 
the correct result (Turn 36) and puts it in the context (Turn 38). 

A characteristic for this pathway is the contextualization that takes place simultaneously or in other cases in short switches between 
the contextual-graphical representation and the symbolic representation (see Fig. 5). In contrast to the Pathway of Direct Translation 
(Fig. 4), this pathway is strongly rooted in the contextual representation. In contrast to the Pathway of Informal Strategies (Figs. 6 and 7 
below), this pathway is strongly connected with the underlying operations like multiplication or division. 

5.1.3. Pathway of informal strategies 
In our data, we identified a deviation from the intended emergent modelling pathway from Fig. 2 that we termed Pathway of 

Informal Strategies. It deviates from the intended emergent modelling pathway in that it does not connect to multiplications and di
visions. Instead, students mainly work (i) in a contextual or graphical representation (Table 6 and Fig. 6) or (ii) start to mathematize 
(using symbolic representation; Table 7 and Fig. 7) for obtaining or justifying the result without reaching the formal operation. 

Table 5 
Coded Transcript 4.1M-Group E (Salva, Pere, & Melania).  

4.1M Multiplication 
problem 

“We have 8 packages. Each package contains 1/10 kilos. How many kilos do 
we have in total?”  

33 Salva: 1 over 10…  
34 Pere: 1 over 10 is equal to 0.1 kg. 

We multiply this by 8 packages [Writes down his solution steps] …   

(We have 0.8 kg; 0.1 kg × 8 packages = 0.8 kg) 

Converting the symbolic representation: Converting 
fraction to decimal number 
Choosing an operation 
Contextualizing the operation 

35 Salva: And it will give us the result…  
36 Pere: 0.8. Stating result 
[…]    
38 Pere: 0.8 kg. Contextualizing the result  
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Focusing on the first case (i), Table 6 shows a transcript from Session 4 in which Alba (from Group B) works on the Partitive Division 
Problem 3.3P (Table 6 and Fig. 6); while Bianca works on the Pathway of Operational Connection (see below in Fig. 8). 

Alba draws a model of the 5 ½ packages for which the weight adds to the total amount of 11 kg (before Turn 14). From the drawings 
and the audio, we assume that she did not take the 2 kg from earlier problems, but determined them by trial-and-error in graphically 
adding up. In Turn 14, when Bianca asks where the 2 kg come from, she seems to assume that Alba knows the result 2 kg from the 
earlier problems. In her question, she erroneously uses the word total (in the Spanish original “total”, Turn 14) for the result. Alba, who 
is focused on the situation structure (2 + 2 + 2 + 2 + 2 + 1) rather than on the numbers, reacts to the word total, not to where the 2 kg 
came from. In Turn 15, Alba corrects that the total is 11 kg, but Bianca is totally focused on the numbers. After Bianca strengthens her 
point of view by reading out the question in the problem text (Turn 20), Alba clarifies the different perspectives by making explicit that 
the 2 kg is the weight of each package (Turn 21). We assume Alba points to her drawing (not traceable in the audio-recording), because 
in Turn 22, Bianca explicitly refers to it by “seeing” the total 11. The episode continues in that Alba explains her informal strategy of 
counting up in a graphical representation for justifying her result 2 kg. However, they do not connect this informal strategy to a formal 
operation. 

In the second case (ii), Table 7 shows a transcript from Session 4 in which Jose (from Group C) works on the Quotitive Division 
Problem 4.2Q. The difference of this second case considering the previous one is that students start to mathematize from the contextual 
representation establishing relationships between quantities perhaps even using mathematical symbols. However, still not using the 
formal operation of multiplication or division. 

Fig. 5. Analysis of the Pere’s navigation space in Transcript 4.1M-Group E (Salva, Pere, & Melania).  

Fig. 6. Analysis of Alba’s navigation space in Transcript 3.3P-Group B (Alba, Bianca, & Merlín).  
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Jose looks for an equivalent fraction of 4/5 (before Turn 110). Later, Jose explains that he was aware that the denominator had to 
be “10”, as it is the “how much” (Turn 118). We could understand that the expression “how much” would refer to the number of kilos in 
each package (1/10 is the amount that must be repeated). After the prompts of the teacher, by pointing at the numerator (also in Turn 
118), he indicates that this number (8) would be the number of packages. Later, he specifies that 8/10 would represent the total 
number of kilos (Turn 120). Finally, he specifies that the result is “8 packages”, quantifying the number of tenths (8 × 1/10 = 8/10). 

The episode shows how Jose from a contextual representation can symbolize his thinking by using equivalent fractions. Never
theless, this process does not imply the connection of this strategy with the formal operation of division. 

Figs. 6 and 7 show the characteristics of the Pathway of Informal Strategies: the use of contextual or graphical representations for 
determining the result or for validating and justifying it. However, without making the connection to the formal multiplications and 
divisions (column of symbolic representation). This characteristic distinguishes this pathway from the Pathway of Contextualizing the 
Chosen Operation that is strongly connected with the chosen operation (formal multiplication or division). 

5.1.4. Pathway of operational connection: using reference to other problems for finding or validating result 
The intended emergent modelling pathway exemplified in Fig. 3 invites students in connecting the problems in order to make use of 

the inverse relationships between multiplication and division. However, we found a navigation pattern that we classified as a Pathway 
of Operational Connection. In these navigations, students make connections to other problems, but not for relating mathematical 
problem structures, but for operationally finding or validating the result. 

We exemplify the Pathway of Operational Connection by a transcript from Session 2 (in Table 8) in which Group B works on the 
Quotitive Division Problem 2.2Q (n packages × 1/2 kg = 4 kg) and immediately relate it to the other Problems 2.1P (8 packages × n kg 
= 4 kg) and 2.3M (asking for 8 packages × 1/2 kg = n kg) of the same varied problem set. They use the identified connection to 
immediately derive the result of Problem 2.2Q in one of the two other problems. After finding the result, they start searching for the 
operation, yet without any relation to the structure of the situation (Table 8 and Fig. 8). 

The students’ problem-solving process for the given Problem 2.2Q starts by seeing connections to the Problem 2.1P or 2.3M (Turns 
55–68). They explicitly state that they have “the same results” (Turn 56), meaning that the given quantities and the respecting numbers 
in the different problems are the same. Based on the discovered operational connection, they identify “8 packages” that is a given 
quantity in another problem as the unknown solution of this problem (Turn 68). After determining the result 8, they start looking for a 
suitable operation (Turn 71) by which that results in 8. In this regard, Merlín is joking about an arbitrary operation (Turn 77). Merlín’s 
joke is an indicator of his awareness that he should not write an operation with arbitrary numbers. Instead, they search for an operation 
that contains 4 and 1/2. It is remarkable that they split 1/2 into the two digits 1 and 2 and start a trial-and-error procedure for finding 
an operation that results in 8 (Turns 81–82 and Turns 85–87). They result not in 4 ÷ 1/2, but in an arbitrary combination of digits 
(which procedurally corresponds to the right operation; see Turns 88–90). 

A characteristic for this pathway is the starting point: Students know the result from one of the inverse problems (column of 
reference to other problems in Fig. 8). Then, they try to find a suitable operation that leads to the already known result by trial-and- 
error. As shown in the example above this process of finding an operation can happen in a rather arbitrary and not conceptually based 
way. In these specific navigations, the search for the operation is not inspired by the reflection of the same situation structure. 

Fig. 7. Analysis of Jose’s navigation space in Transcript 4.2Q-Group C (Tíscar, Lola, & Jose).  

C. Zorrilla et al.                                                                                                                                                                                                        



Journal of Mathematical Behavior 73 (2024) 101104

12

5.1.5. Pathway of relational connection: using reference to other problems for finding similar structures 
The intended emergent modelling pathway exemplified in Fig. 3 invites students in connecting the problems in order to make use of 

the inverse relationships between multiplication and division. We found a navigation pattern that we classified as a Pathway of 
Relational Connection in which students use indeed the reference to other problems for finding similar structures of problems. 

We exemplify the Pathway of Relational Connection by a transcript from Session 1 (in Table 9) in which Tíscar and Jose (from Group 
C) work on the Partitive Division Problem 1.2P and relate 12 : 3 = ? to 3 × 4 = 12 from the Problem 1.1M of the same problem set 
(Table 9 and Fig. 9). 

At the beginning of this transcript, Jose realizes that between Problem 1.2P and Problem 1.1M, there exists a connection. He 
articulates a first idea of this connection by referring to the mathematical structure of inverse operations, in that case, a division as the 
inverse of a multiplication (Turn 13). Also, Tíscar notices a connection between the problems in a more contextual mental repre
sentation (Turn 23). Then, Jose focuses on the result of the given problem (Turn 24). Lola justifies the result by referring to Problem 
1.1M (Turn 25). With the prompt of the teacher (Turn 38), Jose repeats his idea (from Turn 13) by “it’s all backwards” (Turn 39) and 
refers that they have all the data of the situation (“you’ve got it all”). Tíscar brings in again a focus on the structural connections 
(inverse relationship) repeating both, the division 12 : 3 and the multiplication 4 × 3 (Turn 40). 

Although this pathway looks similar to the Pathway of Operational Connection at a first glance, as it also contains references to the 
other problems, it is characterized by one crucial difference: the reference to other problems is not restricted to the result, but on the 
multiplicative structure (inverse relationship between multiplication and division), approaching the intended emergent modelling 
pathway exemplified in Fig. 3. 

Table 6 
Coded Transcript 3.3P-Group B (Alba, Bianca, & Merlín).  

3.3P Partitive 
Division 
Problem 

“We have 5 ½ packages. All the packages contain the same number of kilos. We have 11 
kilos in total. How many kilos does each package have?”  

-14 Alba’s 
individual 
drawing 

(Each package weights 2 kg.) 

Reporting the mental contextual 
representation and/or graphical 
representation (Informal strategy: Direct 
modelling) 
Stating result 

14 Bianca: […] What are you doing? You know that the total has to be 2, don’t you?  
15 Alba: 11 [corrects Bianca’s “total” of 2 kg into the total of 11]! Reporting the mental contextual 

representation and/or graphical 
representation (Informal strategy: Direct 
modelling) 

[…]    
18 Bianca: Let’s see, it has to give 2 kilos, you know?  
19 Alba: It has to give 11 in total. Contextualizing the data of the problem 
20 Bianca: No, because the total has to be… “How many kilos does each package have?” [reads out]. 

It has to be 2 kilos.  
21 Alba: 2 kilos each package [presumably referring to her drawing]. Stating result 

Contextualizing the result 
22 Bianca: Yeah, and I see 11 there [referring to Alba’s drawing].  
23 Alba: 11 in total. Can’t you see? 2, 2, 2, 2, 2 and 1. Reporting the mental contextual 

representation and/or graphical 
representation 

24 Bianca: That’s not 2. That’s half. 
25 Alba: That’s it. That’s why it’s 1. 
26 Bianca: Ah, you’ve put a 1…  
[…]    
44 Bianca: So, 2… Right, that’s why… And the statement says [reads out], “How many kilos does 

each package have?” So, 2 kilos.   
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5.2. Prevalence of the enacted modelling pathways identified 

In total, we have identified five modelling pathways. Most of the analyzed 408 navigations could be subsumed under one of these 
pathways. In this subsection, we summarize the prevalence of the enacted modelling pathways identified. 

In total, 158 out of the 408 navigations were categorized as No communication, when students did not communicate enough to 
classify their navigations in any of the pathways. The remaining 250 navigations were categorized under one or more of the pathways.  
Table 10 shows the prevalence of pathways within problems and across problems. The sum of occurrences was 276, since 24 navi
gations were categorized by two pathways and one by three pathways. 

The most frequent pathway is the Pathway of Direct Translation which was identified 126 times, followed by the Pathway of 
Contextualizing the Chosen Operation. The least frequent is the pathway for one of the two connections for which the design was 
originally developed: Pathway of Relational Connection. In contrast, students made operational connections (Pathway of Operational 
Connection) in 47 navigations. 

Table 10 reveals also insights into the variation of the prevalence of the pathways along the problem sets. In Problem Set 1 
(1.1M–1.3Q and E1.4M–E1.6Q), as long as the problems only contained natural numbers, the students often moved directly to the 
symbolic representation and the result, at least in their articulation (Direct Translation). 

References to other problems to validate or justify the result of the problem (Operational Connection) become more relevant with the 
introduction of fractions in Problem Set 2 (2.1P–2.3M with one proper fraction). This pathway is less frequent in the other problem 
sets, in which Contextualizing the Chosen Operation is more frequent, reflecting a greater need to contextualize the symbolic repre
sentation for several fractions and improper fractions. 

The Pathway of Informal Strategies appears more frequently in the extra problems. This shows the need of students to work in a 
contextual or graphical representation or start to mathematize using the symbolic representation for obtaining or justifying the results 
when they have to generalize their knowledge to other context situations. 

6. Discussion 

6.1. Intended (emergent) modelling pathways versus enacted modelling pathways 

Five students modelling pathways were identified that provide information related to student’s cognitive processes used in the 
varied problem sets and thereby allow to compare them with the intended modelling pathways for which the design was developed: (i) 
Direct Translation pathway: students jump immediately from the problem text to the symbolic and numerical representations; (ii) 
Contextualizing the Chosen Operation pathway: students directly articulate the chosen operation, but they construct a mental contextual 
representation from the problem text that allows them to contextualize the operation; (iii) Informal Strategies pathway: students work in 
a contextual or graphical representation or start to mathematize using the symbolic representation for obtaining or justifying the 
results without achieving the formal operations; (iv) Operational Connection pathway: students reference to other problems for finding 
or validate the result without understanding the situation structure; and (v) Relational Connection pathway: students reference to other 
problems for identifying similar structures. We need to emphasize that these are the communicational pathways, not necessarily the 
students’ mental pathways. The thinking might have been richer than what was articulated in the communication. 

Fig. 10 reveals the comparison between the intended (emergent) modelling pathways in the design and the modelling pathways 
empirically identified when students work in the problem sets. Whereas the Relational Connection pathway corresponds to an intended 
emergent modelling pathway, the other pathways deviate from the intended pathways in varying degrees and with varying conse
quences for the learning, so disentangling these backgrounds in this analytic summary allows us to make explicit in how far the 
findings not only reveal descriptive, but also explanative empirical outcomes. 

Within the originally intended modelling pathway, students go from the textual representation of the contextual problem to the 
chosen operation by structuring first a mathematical model of the situation (Vom Hofe & Blum, 2016). The pathways of Direct 
Translation and Contextualizing the Chosen Operation are deviations from this intended modelling pathway. In Direct Translation, stu
dents do not draw upon the cognitive processes of structuring and interpreting. In Contextualizing the Chosen Operation, students might 
also first jump to the chosen operation, but then construct a mental contextual representation from the problem text that allows them 
to contextualize their choice, that means, structuring and interpreting occur, but later than expected. 

The pathway of Direct Translation has been problematized in the literature as underlying many inaccurate modelling decisions due 
to a superficial focus on numbers and key terms that “define” relationships (Hegarty et al., 1995). These inaccurate modelling decisions 
may also be influenced by intuitive tendencies (e.g., multiplication always makes bigger; Fischbein et al., 1985) that unconsciously 
interfere with correct reasoning. In our analysis, some students’ navigations were classified as Direct Translation although their written 
documents give evidence of successful problem-solving activities in this pathway with a deep mental contextual representation, but 
they seem to have felt no need to verbalize their contextual representation. These students’ written products give also evidence for 
their mental capacity to control the intuitive tendencies, reflecting and monitoring the different mental processes (i.e., inhibitory 
control, Van Dooren & Inglis, 2015), even if the communication does not reflect this capacity. 

Additionally, also the pathway of Contextualizing the Chosen Operation is an extension of existing findings on Direct Translation, as 
many students seem to structure the situation before or after choosing the operation. It can be seen as a step in a productive direction as 
students engage in reflections about the meanings in the situation structure (Borromeo Ferri, 2006). 

The pathway of Informal Strategies is an important part of the originally intended emergent modelling pathway: It was intended to 
use invariance of number types across problem sets to encourage students to draw upon informal strategies (Empson & Levi, 2011). But 
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the design intended to elicit informal strategies for the purpose of connecting them to the newly emerging mental models of multi
plication and division when students move from natural numbers to fractions (see Fig. 10). In contrast to these intentions, students 
worked in a contextual or graphical representation or started to mathematize using the symbolic representation for obtaining or 
justifying the results without connecting them with the new formal operation model (multiplication or division). According to 
Gravemeijer (2007), emergent modelling points to an activity based on the construction of new mathematical ideas, in our case, the 
formal models of multiplication and division with fractions. In this activity, modelling and symbolizing are interrelated. Our results 
document how students model their own informal strategies. However, symbolization is not necessarily linked to a formal model, so 
students can mathematize their informal strategies by using symbolic representations. Although students do not connect their 
approach to the formal operation of multiplication or division in this pathway, they seem to start structuring the situation with 
graphical representations and mathematizing the relations between quantities by symbols. This can be interpreted as indication that 
they have found other productive ways of solving the problems when they are working with fractions. From this interpretation, we 
argue that this pathway is an important first step toward the connection of mathematizing-interpreting processes that is key to the 
intended emergent modelling pathway (Fig. 2). 

One of the intended emergent modelling pathway is based upon inverse relationships and focused on relating situation structures 
by discovering the commonality between structures and using the mental model of multiplication as the inverse relationship to di
vision (Downton, 2013). In contrast, the identified pathway of Operational Connection deviates from this intended emergent modelling 
pathway in that students do not relate situation structures, but use the result known from one of the inverse problems and, in many 
cases, they try to find a suitable operation that leads to the already known result by trial-and-error. This pathway can be interpreted as 

Table 7 
Coded Transcript 4.2Q-Group C (Tíscar, Lola, & Jose).  

4.2Q Quotitive 
Division 
Problem 

“We have some packages. Each package contains 1/10 kilos. We have 4/5 kilos in 
total. How many packages do we have?”  

-110 Jose’s 
individual 
writing 

(There are 8 packages.) 

Symbolizing the context 
(Informal strategy: Multiplicative strategy) 
Stating result 

110 Jose: 4.5 [incorrectly indicating “4/5″] into 8. Stating result 
111 Lola: Can I see?  
112 Jose: Yes, I’ve done equivalent fractions.  
113 Teacher: What have you done here?  
114 Jose: I’ve been looking for equivalent fractions. 4 over 5 is how many kilos there are. Contextualizing the data of the problem 
115 Teacher: Yes.  
116 Jose: So, if I multiply it by 2, that gives 10, which is this [presumably pointing at "1/10"]. Reporting the mental contextual representation 

and/or graphical representation 117 Teacher: Yes. 
118 Jose: This is. So to speak. “How much”, so to speak. And this [presumably pointing at the 

numerator] is the packages. 
119 Teacher: I mean, what? 
120 Jose: This [presumably pointing at “8/10″] is what all the packages weigh. A fraction. I 

mean. 
121 Teacher: A fraction, yes. 
122 Jose: So, 10 over 1. 
123 Teacher: A tenth.  
124 Jose: A tenth. 8 tenths would be 8 packages. Stating result 

Contextualizing the result  
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Fig. 8. Analysis of the group’s navigation space in Transcript 2.2Q-Group B (Bianca, Alba, & Merlín).  

Table 8 
Coded Transcript 2.2Q-Group B (Bianca, Alba, & Merlín).  

2.2Q Quotitive 
Division 
Problem 

“We have some packages. Each package contains 1/2 kilos. We have 4 kilos in 
total. How many packages do we have?”  

55 Bianca: It says it here. Comparing the numbers of the problems 
56 Alba: It’s the same. It’s the same results, but…  
[…]    
68 Bianca: […] “We have 4 kilos in total… How many packages…?” Well… 

Yes! It says it here: “We have 8 packages!” 
Comparing the numbers of the problems 
Referring to the context of the problems 
Stating result 
Contextualizing the result 

[…]    
71   

[…] 

Alba: So what? It’s just that we have to do the operation.  

77 […] Merlín: Yeah, and what do we do? 5 plus 4 minus 1 [joking]?  
81 Bianca: It’s 4 multiplied by 1 divided by 2. Choosing an operation 
82 Merlín: What did you do? What do you mean, 4 multiplied by 1…?  
[…]    
85 Bianca: It’s just that to know the result you have to make 4 multiplied by one divided 

by two.  
86 Alba: What? That doesn’t give 8… Checking the result according to the number obtained 

from another problem 87 Bianca: 4 divided by 2? Ah, no. It doesn’t give 8. 
88 Alba: No, it’s not like that… It’s 4 multiplied by 2 divided by 1. Choosing an operation 
89 Bianca: Oh, yeah?  
90 Alba: Yes… 4 multiplied by 2 divided by 1.   
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an indication of only superficial recognition of the connection between the situation structure and the operation needed. 
Whereas all students started first steps in the intended emergent modelling pathway based upon invariance of number types across 

problem sets (with pathways of Informal Strategies or Operational Connection), only few of them completed the intended emergent 
modelling pathway based upon inverse relationships (n = 9, Relational Connection Pathway) with an explicit focus on situation 
structures to be formalized. This rarely observed pathway substantiates the original design intentions that the problem sets designed 
according to the principle of variation could built a “space of conceptual relations” (Sun, 2011b, p. 77). In this space, the comparison 
between problems is the primary condition to identify structures and relations (Sun, 2011a). Nevertheless, the low frequencies ob
tained indicate that the learning of new mental models for operations requires deeper thinking and perhaps more initial support by 
collective reflections. In this way, the analysis leads to identifying affordances and critical conditions of success for the implementation 

Fig. 9. Analysis of Tíscar’s and Jose’s navigation space in Transcript 1.2P-Group C (Tíscar, Lola, & Jose).  

Table 9 
Coded Transcript 1.2 P-Group C (Tíscar, Lola, & Jose).  

1.2P Partitive 
Division 
Problem 

“We have 3 packages. All the packages contain the same number of kilos. We have 12 kilos in total. 
How many kilos does each package have?”  

13a/ 
b 

Jose: But, well, if this is the other way around… The next problem is to do the inverse. 12 divided by 3. Connecting the mathematical structures 
of the problems 
Choosing an operation 

[…]    
23 Tíscar: Well, it’s true, it’s the same thing. If he’s already telling you here. “How many kilos does each 

package have?” [reading out the text of Problem 1.2P]. 
Comparing the numbers of the problems 
Referring to the context of the problems 

24 Jose: In the second one [referring to Problem 1.1M] it’s 4 packages, just so you know. Stating result 
25 Lola: Yes, because it says so in the first one [referring to Problem 1.1M].  
26 Tíscar: It says it in the first one.  
27 Jose: It’s the other way around. Connecting the mathematical structures 

of the problems 
[…]    
38 Teacher: Did you talk about it? Relating the problems 
39 Jose: It’s just that it’s all backwards, I mean, it’s… With the first exercise you’ve got it all.  
40 Tíscar: 12 divided by 3… 4 times 3… 12 divided by… Connecting the mathematical structures 

of the problems 
Choosing an operation 

[…]    
50 Tíscar: Lola, I think it’s the other way round. Because if you do 3 divided by 12, it’s different. Choosing an operation 
51 Lola: So, 12 divided by 3?  
52 Tíscar: Yes, it’s because it would give you commas [Spanish expression for decimal points]…  
53 Lola: Yeah, yeah…   
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of the design principle as discussed in the following section. 

6.2. Implications for the design: varied problem sets to connect inverse problems for the same multiplicative situations and problems with 
natural numbers to problems with rational numbers 

Our results have highlighted that as expected, problems containing only natural numbers were easy to solve for students, so they 
often took Direct Translation pathways when more elaborate modelling was not necessary for them (Borromeo Ferri, 2006). In contrast, 
confronted with new problems with fractions, students followed other pathways such as the Operational Connection pathway or the 
Relational Connection pathway. The occurrence of these two pathways can be interpreted as a first indicator for the functioning of our 
design principle of variation: As intended, the problem structure of one problem, multiple changes (OPMC; Sun, 2019) provided students 
with opportunities to connect operations, sometimes for example for validating the result. 

However, the prevalence of the Operational Connection pathway also indicates a critical condition of success, as it draws only upon 
superficial relationships (trial-and-error), where the major potential of OPMC unfolds with the Relational Connection pathway. 
Furthermore, many students started their work with fractions with pathways of Contextualizing the Chosen Operation or Informal 
Strategies. In both pathways, they worked in contextual or graphical representations as the mathematization into symbolic repre
sentation was not straightforward. The high prevalence of these two pathways can be interpreted as indicators for the functioning of 
one problem, multiple solution strategies (OPMS) that can invite the use of different informal strategies. The same applies for the variation 
format multiple problems, one solution strategy (MPOS) that seem to have invited students to continue to choose the same strategy with 
fractions (independently of the numbers given). In this way, the analysis helped us to generate not only descriptive but also explanative 
findings, allowing to disentangle students’ thinking and possible backgrounds in depth of their transitioning between representations 
and number domains. 

The identified modelling pathways can inform the instructional designers and teachers how to support the development of mul
tiplicative structures in the transition from natural numbers to fractions. 

The two kinds of connections used in the instruction focused on the inverse relationships of multiplication, partitive division and 
quotitive division problems within the same number type, and the connection across natural numbers and proper and improper 
fractions within the same structure allow us to identify key features of modelling processes. The features of the pathway of Informal 
Strategies and Contextualizing the Chosen Operation can be considered as starting point in the development of relational thinking in the 
intended pathway of Relational Connection, and their explicit identification can support teachers’ future work in leveraging students’ 
ideas to these pathways (Empson & Levi, 2011). 

This is important, as the analysis also revealed that working with varied problem sets can simplify students’ modelling processes. In 
the Direct Translation Pathway, students chose the operation without verbalizing the mental contextual situation, but it does not mean 
that they did not have it in their minds. Teacher who are aware of these findings can deliberately elicit these implicit ideas. 

Moreover, the Operational Connection Pathway shows how students do not reflect on the contextual situation or on the mathematical 
structure of the problem. Many students on this pathway use a trial-and-error strategy to find the formal operation that has as a result 
the number they know from the other inverse problems; thus, they evidenced a superficial recognition of the connection between the 

Table 10 
Frequency of identified pathways in 250 navigations, listed by problem.    

Direct Translation Contextualizing the Chosen Operation Informal Strategies Operational Connection Relational Connection 

Problems 1.1M  10  2       
1.2P  5  2    5  2 
1.3Q  10  1    3  2 
E1.4M  7  2  2     
E1.5P  3  1  1    1 
E1.6Q  10  1  1     
2.1P  6  6    5   
2.2Q  2  6    7   
2.3M  5  4  1  4  3 
E2.4P  2    9     
E2.5Q  3  5  3     
E2.6M  2  7  1     
3.1Q  10  2  1  1   
3.2M  4  4    1   
3.3P  3  4  1  4  1 
4.1M  4  4    2   
4.2Q  3  2  1  2   
4.3P  1  1    5   
5.1M  6  4  2     
5.2P  4      4   
5.3Q  8    1  3   
E5.4M  7  4       
E5.5P  6  4  1  1   
E5.6Q  5  1  2     

Total 126  67  27  47  9  
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Fig. 10. Overview of intended modelling pathways and students’ enacted modelling pathways empirically identified.  
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situation structure and the operation needed. Designers and teachers aware of this pathway can be alert to support students by col
lective reflections to deepen their processes and to successively learn to draw Relational Connections. 

6.3. Methodological limitations and outlook to future research 

The findings are strongly tied to the context condition of teaching and learning, e.g., the particular chosen problems, and the 
particular selected focus students. The selection of the more talkative small groups of students can be seen as a limitation of the study. 
Nevertheless, we might suspect that the less talkative groups would have produced less deep or untraceable pathways, so we believe to 
have identified the upper limit of effects. 

Moreover, this paper only reports on an instruction with six sessions. Future instructions can build on our findings for a refinement 
of the design. For instance, first, the frequency of superficial pathways such as the Operational Connection or Direct Translation pathway 
reveals the need to extend the sessions of the instruction, since five sets of problems do not seem sufficient to introduce connections on 
inverse relationships in multiplicative structure problems and connections about these problems with natural and rational numbers. 
Furthermore, the design could be enriched by further in class discussions about the different representations and their connections. 
Second, the teacher should guide students with some prompts to promote reflection for drawing connections on inverse relationships 
between problem structures. 

For future work, it would be interesting to analyze how the prompts of the teacher and other students of the group influence the 
pathways used by the students. We hypothesize that if the pathway followed by the students allows them to obtain the result of the 
problem, they would probably not modify the pathway used to a more meaningful one. For that, students need reasons to modify their 
pathway (Hegarty et al., 1995). Furthermore, the fact that the students go through different pathways when solving the different sets of 
problems reveals the need to examine the students’ modelling pathways in each task to identify the changes in the students’ pathways 
along the instruction. 
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González-Forte, J. M., Fernández, C., & Van Dooren, W. (2020). Is there a gap or congruency effect? A cross-sectional study in students’ fraction comparison. Studia 

Psychologica, 62(2), 109–122. https://doi.org/10.31577/sp.2020.02.794 
Gravemeijer, K. (2007). Emergent modelling as a precursor to mathematical modelling. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and 

applications in mathematics education. The 14th ICMI Study (pp. 137–144). Springer.  

C. Zorrilla et al.                                                                                                                                                                                                        

http://refhub.elsevier.com/S0732-3123(23)00074-3/sbref1
https://doi.org/10.1007/BF00305893
https://doi.org/10.2307/749419
https://doi.org/10.1007/BF00308139
https://doi.org/10.1007/BF00308139
https://doi.org/10.1007/BF02655883
https://doi.org/10.1007/BF02655883
https://doi.org/10.1007/s11858-007-0042-3
https://doi.org/10.1007/s11858-007-0042-3
https://doi.org/10.1037/0022-0663.90.2.321
http://refhub.elsevier.com/S0732-3123(23)00074-3/sbref8
http://refhub.elsevier.com/S0732-3123(23)00074-3/sbref8
http://refhub.elsevier.com/S0732-3123(23)00074-3/sbref9
http://refhub.elsevier.com/S0732-3123(23)00074-3/sbref9
http://refhub.elsevier.com/S0732-3123(23)00074-3/sbref9
http://refhub.elsevier.com/S0732-3123(23)00074-3/sbref10
http://refhub.elsevier.com/S0732-3123(23)00074-3/sbref10
https://doi.org/10.1007/s13138-019-00153-z
https://doi.org/10.1016/j.stueduc.2020.100953
http://refhub.elsevier.com/S0732-3123(23)00074-3/sbref13
https://doi.org/10.2307/748969
https://doi.org/10.31577/sp.2020.02.794
http://refhub.elsevier.com/S0732-3123(23)00074-3/sbref16
http://refhub.elsevier.com/S0732-3123(23)00074-3/sbref16


Journal of Mathematical Behavior 73 (2024) 101104

20

Greer, B. (1992). Multiplication and division as models of situation. In D. Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 276–295). 
McMillan.  

Gu, L., Huang, R., & Marton, F. (2004). Teaching with variation: A Chinese way of promoting effective mathematics learning. In L. Fan, N. Y. Wong, J. Cai, & S. Li 
(Eds.), How Chinese learn mathematics: Perspectives from Insiders (pp. 309–347). World Scientific.  

Han, X., Gong, Z., & Huang, R. (2017). Teaching and learning mathematics through variation in lesson study. In R. Huang, & Y. Li (Eds.), Teaching and Learning 
Mathematics through Variation (pp. 267–293). Sense Publishers.  

Harel, G., Behr, M., Post, T., & Lesh, R. (1994). The impact of number type on the solution of multiplication and division problems: Further considerations. In G. Harel, 
& J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 365–388). SUNY Press.  

Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal 
of Educational Psychology, 87(1), 18–32. https://doi.org/10.1037/0022-0663.87.1.18 

Huang, R., Mok, I. A. C., & Leung, F. K. S. (2006). Repetition or variation: Practising in the mathematics classrooms in China. In D. Clarke, C. Keitel, & Y. Shimizu 
(Eds.), Mathematics classrooms in twelve countries: The insider’s perspective (pp. 263–274). Sense Publishers.  

Leiss, D., Plath, J., & Schwippert, K. (2019). Language and mathematics – Key factors influencing the comprehension process in reality-based tasks. Mathematical 
Thinking and Learning, 21(2), 131–153. https://doi.org/10.1080/10986065.2019.1570835 
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