14 research outputs found

    Evidence for models of diagnostic service provision in the community: literature mapping exercise and focused rapid reviews

    Get PDF
    Background Current NHS policy favours the expansion of diagnostic testing services in community and primary care settings. Objectives Our objectives were to identify current models of community diagnostic services in the UK and internationally and to assess the evidence for quality, safety and clinical effectiveness of such services. We were also interested in whether or not there is any evidence to support a broader range of diagnostic tests being provided in the community. Review methods We performed an initial broad literature mapping exercise to assess the quantity and nature of the published research evidence. The results were used to inform selection of three areas for investigation in more detail. We chose to perform focused reviews on logistics of diagnostic modalities in primary care (because the relevant issues differ widely between different types of test); diagnostic ultrasound (a key diagnostic technology affected by developments in equipment); and a diagnostic pathway (assessment of breathlessness) typically delivered wholly or partly in primary care/community settings. Databases and other sources searched, and search dates, were decided individually for each review. Quantitative and qualitative systematic reviews and primary studies of any design were eligible for inclusion. Results We identified seven main models of service that are delivered in primary care/community settings and in most cases with the possible involvement of community/primary care staff. Not all of these models are relevant to all types of diagnostic test. Overall, the evidence base for community- and primary care-based diagnostic services was limited, with very few controlled studies comparing different models of service. We found evidence from different settings that these services can reduce referrals to secondary care and allow more patients to be managed in primary care, but the quality of the research was generally poor. Evidence on the quality (including diagnostic accuracy and appropriateness of test ordering) and safety of such services was mixed. Conclusions In the absence of clear evidence of superior clinical effectiveness and cost-effectiveness, the expansion of community-based services appears to be driven by other factors. These include policies to encourage moving services out of hospitals; the promise of reduced waiting times for diagnosis; the availability of a wider range of suitable tests and/or cheaper, more user-friendly equipment; and the ability of commercial providers to bid for NHS contracts. However, service development also faces a number of barriers, including issues related to staffing, training, governance and quality control. Limitations We have not attempted to cover all types of diagnostic technology in equal depth. Time and staff resources constrained our ability to carry out review processes in duplicate. Research in this field is limited by the difficulty of obtaining, from publicly available sources, up-to-date information about what models of service are commissioned, where and from which providers. Future work There is a need for research to compare the outcomes of different service models using robust study designs. Comparisons of ‘true’ community-based services with secondary care-based open-access services and rapid access clinics would be particularly valuable. There are specific needs for economic evaluations and for studies that incorporate effects on the wider health system. There appears to be no easy way of identifying what services are being commissioned from whom and keeping up with local evaluations of new services, suggesting a need to improve the availability of information in this area. Funding The National Institute for Health Research Health Services and Delivery Research programme

    A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

    Get PDF
    A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp → pp + Z/γ + X, in proton-tagged events from proton–proton collisions at √s = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600–1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. odelindependent upper limits on the visible production cross section of pp → pp + Z/γ + X are set

    Portable Acceleration of CMS Computing Workflows with Coprocessors as a Service

    Get PDF
    A preprint version of the article is available at: arXiv:2402.15366v2 [physics.ins-det], https://arxiv.org/abs/2402.15366 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/MLG-23-001 (CMS Public Pages). Report numbers: CMS-MLG-23-001, CERN-EP-2023-303.Data Availability: No datasets were generated or analyzed during the current study.Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors.SCOAP3. Open access funding provided by CERN (European Organization for Nuclear Research

    {Search for direct production of GeV-scale resonances decaying to a pair of muons in proton-proton collisions at s \sqrt{s} = 13 TeV}

    No full text
    A search for direct production of low-mass dimuon resonances is performed using = 13 TeV proton-proton collision data collected by the CMS experiment during the 2017–2018 operation of the CERN LHC with an integrated luminosity of 96.6 fb−1. The search exploits a dedicated high-rate trigger stream that records events with two muons with transverse momenta as low as 3 GeV but does not include the full event information. The search is performed by looking for narrow peaks in the dimuon mass spectrum in the ranges of 1.1–2.6 GeV and 4.2–7.9 GeV. No significant excess of events above the expectation from the standard model background is observed. Model-independent limits on production rates of dimuon resonances within the experimental fiducial acceptance are set. Competitive or world’s best limits are set at 90% confidence level for a minimal dark photon model and for a scenario with two Higgs doublets and an extra complex scalar singlet (2HDM+S). Values of the squared kinetic mixing coefficient ε2 in the dark photon model above 10−6 are excluded over most of the mass range of the search. In the 2HDM+S, values of the mixing angle sin(θH) above 0.08 are excluded over most of the mass range of the search with a fixed ratio of the Higgs doublets vacuum expectation tan β = 0.5

    Performance of the CMS Level-1 trigger in proton-proton collisions at root s=13 TeV

    No full text
    At the start of Run 2 in 2015, the LHC delivered proton-proton collisions at a center-ofmass energy of 13 TeV. During Run 2 (years 2015-2018) the LHC eventually reached a luminosity of 2.1 x 10(34) cm(-2) s(-1), almost three times that reached during Run 1 (2009-2013) and a factor of two larger than the LHC design value, leading to events with up to a mean of about 50 simultaneous inelastic proton-proton collisions per bunch crossing (pileup). The CMS Level-1 trigger was upgraded prior to 2016 to improve the selection of physics events in the challenging conditions posed by the second run of the LHC. This paper describes the performance of the CMS Level-1 trigger upgrade during the data taking period of 2016-2018. The upgraded trigger implements pattern recognition and boosted decision tree regression techniques for muon reconstruction, includes pileup subtraction for jets and energy sums, and incorporates pileup-dependent isolation requirements for electrons and tau leptons. In addition, the new trigger calculates high-level quantities such as the invariant mass of pairs of reconstructed particles. The upgrade reduces the trigger rate from background processes and improves the trigger efficiency for a wide variety of physics signals

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    No full text
    The second-order Fourier coefficients (v(2)) characterizing the azimuthal distributions of Y(1S) and Y(2S) mesons produced in PbPb collisions at root s(NN) = 5.02 TeV are studied. The Y mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb(-1). The scalar product method is used to extract the v2 coefficients of the azimuthal distributions. Results are reported for the rapidity range vertical bar y vertical bar < 2.4, in the transverse momentum interval 0 < pT < 50 GeV/c, and in three centrality ranges of 10-30%, 30-50% and 50-90%. In contrast to the J/psi mesons, the measured v(2) values for the Y mesons are found to be consistent with zero. (C) 2021 The Author(s). Published by Elsevier B.V

    Correlations of azimuthal anisotropy Fourier harmonics with subevent cumulants in pPb collisions at root s(NN)=8.16 TeV

    No full text
    Event-by-event long-range correlations of azimuthal anisotropy Fourier coefficients (v(n)) in 8.16 TeV pPb data, collected by the CMS experiment at the CERN Large Hadron Collider, are extracted using a subevent four-particle cumulant technique applied to very low multiplicity events. Each combination of four charged particles is selected from either two, three, or four distinct subevent regions of a pseudorapidity range from -2.4 to 2.4 of the CMS tracker, and with transverse momentum between 0.3 and 3.0 GeV. Using the subevent cumulant technique, correlations between v(n) of different orders are measured as functions of particle multiplicity and compared to the standard cumulant method without subevents over a wide event multiplicity range. At high multiplicities, the v(2) and v(3) coefficients exhibit an anticorrelation; this behavior is observed consistently using various methods. The v(2) and v(4) correlation strength is found to depend on the number of subevents used in the calculation. As the event multiplicity decreases, the results from different subevent methods diverge because of different contributions of noncollective or few-particle correlations. Correlations extracted with the four-subevent method exhibit a tendency to diminish monotonically toward the lowest multiplicity region (about 20 charged tracks) investigated. These findings extend previous studies to a significantly lower event multiplicity range and establish the evidence for the onset of long-range collective multiparticle correlations in small system collisions

    Search for W ` bosons decaying to a top and a bottom quark at root s=13 TeV in the hadronic final state

    No full text
    A search is performed for W ‘ bosons decaying to a top and a bottom quark in the all-hadronic final state, in proton-proton collisions at a center-of-mass energy of 13TeV. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 137fb(-1). Deep neural network algorithms are used to identify the jet initiated by the bottom quark and the jet containing the decay products of the top quark when the W ‘ boson from the top quark decays hadronically. No excess above the estimated standard model background is observed. Upper limits on the production cross sections of W ‘ bosons decaying to a top and a bottom quark are set. Both left- and right-handed W ‘ bosons with masses below 3.4TeV are excluded at 95% confidence level, and the most stringent limits to date on W ‘ bosons decaying to a top and a bottom quark in the all-hadronic final state are obtained. (C) 2021 The Author(s). Published by Elsevier B.V

    ERRATUM : The CMS barrel calorimeter response to particle beams from 2 to 350 GeV/c

    No full text
    corecore