25 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Assessment of tuning methods for enfacing approximate energy linearity in range-separated hybrid functionals

    Get PDF
    A range of tuning methods, for enforcing approximate energy linearity through a system-by-system optimization of a range-separated hybrid functional, are assessed. For a series of atoms, the accuracy of the frontier orbital energies, ionization potentials, electron affinities, and orbital energy gaps is quantified, and particular attention is paid to the extent to which approximate energy linearity is actually achieved. The tuning methods can yield significantly improved orbital energies and orbital energy gaps, compared to those from conventional functionals. For systems with integer M electrons, optimal results are obtained using a tuning norm based on the highest occupied orbital energy of the M and M + 1 electron systems, with deviations of just 0.1–0.2 eV in these quantities, compared to exact values. However, detailed examination for the carbon atom illustrates a subtle cancellation between errors arising from nonlinearity and errors in the computed ionization potentials and electron affinities used in the tuning
    corecore