2,577 research outputs found
Disability discrimination and well-being in the United Kingdom: a prospective cohort study
Objectives: Disability discrimination is linked with poorer well-being cross-sectionally. The aim of this study was to explore prospective associations between disability discrimination and well-being.
/
Design: Prospective cohort study.
/
Setting: The United Kingdom Household Longitudinal Study.
/
Participants: Data were from 871 individuals with a self-reported physical, cognitive or sensory disability.
/
Primary outcome measures: Depression was assessed in 2009/10. Psychological distress, mental functioning, life satisfaction and self-rated health were assessed in 2009/10 and 2013/14.
/
Results: Data were analysed using linear and logistic regression with adjustment for age, sex, household income, education, ethnicity and impairment category. Perceived disability discrimination was reported by 117 (13.4%) participants. Cross-sectionally, discrimination was associated with depression (OR=5.40, 95% CI 3.25 to 8.97) fair/poor self-rated health (OR=2.05; 95% CI 1.19 to 3.51), greater psychological distress (B=3.28, 95% CI 2.41 to 4.14), poorer mental functioning (B=−7.35; 95% CI −9.70 to −5.02) and life satisfaction (B=−1.27, 95% CI −1.66 to −0.87). Prospectively, discrimination was associated with increased psychological distress (B=2.88, 95% CI 1.39 to 4.36) and poorer mental functioning (B=−5.12; 95% CI −8.91 to −1.34), adjusting for baseline scores.
/
Conclusions: Perceived disability-related discrimination is linked with poorer well-being. These findings underscore the need for interventions to combat disability discrimination
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3>2.1×10-12¿¿s/eV at 90% C.L
Quantum dynamics in strong fluctuating fields
A large number of multifaceted quantum transport processes in molecular
systems and physical nanosystems can be treated in terms of quantum relaxation
processes which couple to one or several fluctuating environments. A thermal
equilibrium environment can conveniently be modelled by a thermal bath of
harmonic oscillators. An archetype situation provides a two-state dissipative
quantum dynamics, commonly known under the label of a spin-boson dynamics. An
interesting and nontrivial physical situation emerges, however, when the
quantum dynamics evolves far away from thermal equilibrium. This occurs, for
example, when a charge transferring medium possesses nonequilibrium degrees of
freedom, or when a strong time-dependent control field is applied externally.
Accordingly, certain parameters of underlying quantum subsystem acquire
stochastic character. Herein, we review the general theoretical framework which
is based on the method of projector operators, yielding the quantum master
equations for systems that are exposed to strong external fields. This allows
one to investigate on a common basis the influence of nonequilibrium
fluctuations and periodic electrical fields on quantum transport processes.
Most importantly, such strong fluctuating fields induce a whole variety of
nonlinear and nonequilibrium phenomena. A characteristic feature of such
dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
Diagnostic value of Pentraxin-3 in patients with sepsis and septic shock in accordance with latest sepsis-3 definitions
Background: Pentraxin-3 (PTX-3) is an acute-phase protein involved in inflammatory and infectious processes. This study assesses its diagnostic and prognostic value in patients with sepsis or septic shock in a medical intensive care unit (ICU). Methods: The study includes 213 ICU patients with clinical criteria of sepsis and septic shock. 77 donors served as controls. Plasma levels of PTX-3, procalcitonin (PCT) and interleukin-6 were measured on day 1, 3 and 8. Results: PTX-3 correlated with higher lactate levels as well as with APACHE II and SOFA scores (p = 0.0001). PTX-3 levels of patients with sepsis or septic shock were consistently significantly higher than in the control group (p ≤ 0.001). Plasma levels were able to discriminate sepsis and septic shock significantly on day 1, 3 and 8 (range of AUC 0.73–0.92, p = 0.0001). Uniform cut-off levels were defined at ≥5 ng/ml for at least sepsis, ≥9 ng/ml for septic shock (p = 0.0001). Conclusion: PTX-3 reveals diagnostic value for sepsis and septic shock during the first week of intensive care treatment, comparable to interleukin-6 according to latest Sepsis-3 definitions. Trial registration: NCT01535534. Registered 14.02.201
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Mechanisms of Hearing Loss after Blast Injury to the Ear
Given the frequent use of improvised explosive devices (IEDs) around the world, the study of traumatic blast injuries is of
increasing interest. The ear is the most common organ affected by blast injury because it is the bodyメs most sensitive
pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a
reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after
blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or
otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion
product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold
shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes,
indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or
damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs) within the basal turn of the
cochlea and decreased spiral ganglion neurons (SGNs) and afferent nerve synapses. Using our mouse model that
recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not
include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory
dysfunction
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
The sudden change phenomenon of quantum discord
Even if the parameters determining a system's state are varied smoothly, the
behavior of quantum correlations alike to quantum discord, and of its classical
counterparts, can be very peculiar, with the appearance of non-analyticities in
its rate of change. Here we review this sudden change phenomenon (SCP)
discussing some important points related to it: Its uncovering,
interpretations, and experimental verifications, its use in the context of the
emergence of the pointer basis in a quantum measurement process, its appearance
and universality under Markovian and non-Markovian dynamics, its theoretical
and experimental investigation in some other physical scenarios, and the
related phenomenon of double sudden change of trace distance discord. Several
open questions are identified, and we envisage that in answering them we will
gain significant further insight about the relation between the SCP and the
symmetry-geometric aspects of the quantum state space.Comment: Lectures on General Quantum Correlations and their Applications, F.
F. Fanchini, D. O. Soares Pinto, and G. Adesso (Eds.), Springer (2017), pp
309-33
Site-selective protein-modification chemistry for basic biology and drug development.
Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.We thank FCT Portugal (FCT Investigator to G.J.L.B.), the EU (Marie-Curie CIG to G.J.L.B. and Marie-Curie IEF to O.B.) and the EPSRC for funding. G.J.L.B. is a Royal Society University Research Fellow.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.239
- …
