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ABSTRACT (154 WORDS) 

Nature has produced an intricate machinery to covalently diversify the structure 

of proteins after their synthesis in the ribosome. In an attempt to mimic nature, 

synthetic chemists have developed a large set of reactions that enables post-

expression modification of proteins at pre-determined sites. These reactions are 

now used to selectively install particular modifications on proteins for many 

biological and therapeutic applications. For example, they provide an 

opportunity to install post-translational modifications (PTMs) on proteins to 

dissect their exact biological roles. Labelling of proteins in live cells with 

fluorescent dyes allows to track protein uptake and intracellular trafficking and 

to optically measure physiological parameters. Through the conjugation of 

potent cytotoxics to antibodies, novel anti-cancer drugs with improved efficacy 

and reduced side-effects spectra may be obtained. In this Perspective we 

highlight the most exciting current and future applications of chemical site-

selective protein-modification and consider which hurdles still need to be 

overcome for a more widespread use. 
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Over billions of years of evolution, nature has developed an intricate machinery 

to covalently attach diverse functional groups to proteins after their synthesis by 

the ribosome, a process called post-translational modification (PTM). Naturally 

occurring protein PTMs are now understood to play important roles in tuning the 

physicochemical properties of proteins, modulating enzymatic activity, 

controlling protein–protein recognition and imparting enzymes with chemical 

functionalities that are not covered by the standard proteinogenic amino acids.1 

For example, the attachment of carbohydrates to proteins — a process known 

as glycosylation — can improve the solubility of proteins and modulate ligand–

receptor interactions.1 Through the reversible addition of phosphate groups at 

serine (Ser), threonine (Thr) or tyrosine (Tyr) residues, enzymes can be 

switched between their active and inactive states. In a similar manner, the 

formation of complexes between two or more proteins can be controlled.1 

Covalently bound co-factors (so-called prosthetic groups) such as flavins or 

inorganic metal clusters can impart metabolic enzymes with the ability to 

perform redox chemistry.1 Collectively, these examples highlight how, through 

the introduction of small modifications, nature often re-designs the structure and 

function of existing proteins to impart immense biological diversity.  

 

In an attempt to follow nature’s example, chemists have developed tools to 

covalently modify proteins with diverse functionalities in the laboratory. Initial 

methodologies typically offered poor control over the precise position of 

modification (i.e., they exhibited poor site-selectivity). Water-stable electrophilic 

carboxylic acid derivatives such as N-hydroxysuccinimidyl (NHS) esters were 

amongst the first reagents used for covalent protein-modification applications.2 

NHS esters react with diverse nucleophiles on protein surfaces, most 

importantly the ε-amine of lysine (Lys) residues. Given the abundance of 

surface Lys on most proteins, the reaction typically results in a mixture of 

products modified at different protein positions. This in turn makes functional 

characterisation of modified proteins difficult, because one is dealing with a 

heterogeneous protein sample rather than a single, homogenous molecule. 

Therefore, reactions that enable chemists to selectively install modifications on 

protein surfaces at pre-defined positions would facilitate both the chemical 

characterization of these modifications and investigation of their exact biological 



function. In the context of this Perspective, we will refer to methods that permit 

the formation of a covalent bond between a protein and a synthetic organic 

molecule at a pre-defined residue as site-selective protein-modification 

reactions. 

 

The challenges associated with the development of site-selective protein-

modification reactions are manifold. Reactions have to be chemoselective for 

one amino acid side chain over all others on the protein surface. Amino acids 

that are lowly abundant on protein surfaces and have unique reactivity lend 

themselves particularly well to site-selective modification chemistries. The most 

important natural amino acid fulfilling these criteria has proven to be surface 

exposed cysteine (Cys) residues.3 Certain natural amino acids may also have 

unique properties when introduced at the N-termini position of a protein. For 

instance, an N-termini serine (Ser) can be oxidized to generate an aldehyde 

that can subsequently be used for site-selective modification.4 Also, at the N-

termini, Cys can react selectively with thioester derivatives to give a native 

peptide bond in a process called native chemical ligation (NCL).5 Site-selective 

protein-modification reactions must furthermore be compatible with aqueous 

buffered systems, not interfere with proper protein folding and proceed at near 

neutral pH and moderate temperatures (i.e., 20-37 °C). Because the chances of 

encountering multiple proteins that carry even lowly abundant natural amino 

acids on their surface increases considerably in complex protein mixtures, it is 

typically only possible to site-selectively label purified recombinant proteins on 

naturally occurring amino acids (Fig. 1). 

 

One method of achieving site-selective modification of a particular protein target 

within a complex mixture of proteins, relies on recent advances in genetic code 

expansion techniques.6,7 These techniques allow for the ribosomal incorporation 

of non-canonical amino acids into proteins that display functionalities which are 

normally not present in living cells.7 These include side chains featuring azide, 

alkyne, ketone, alkene or tetrazine functional groups.8 For each of these 

functionalities, reactions can be envisioned that are highly chemoselective or 

even mechanistically specific for the non-canonical amino acid over all other 

functionalities present in living cells. This concept is referred to as bioorthogonal 



chemistry and is now permitting chemists to site-selectively install modifications 

on individual proteins in complex biological mixtures including in living 

organisms (Fig. 1).9-11 Bioorthogonal ligation reactions may furthermore be 

used on purified protein preparations when bond stability or labelling accuracy 

going beyond that achievable with native amino acids is required (e.g., 

construction of antibody-drug conjugates (ADCs)). 

 

Chemists and biologists are now increasingly using site-selective protein-

modification tools to study the function of naturally occurring PTMs. Additionally, 

by attaching synthetically prepared modifications that are typically not found in 

nature they are attempting to confer novel functionality to proteins of bacterial or 

eukaryotic origin. The aim of this Perspective is to discuss key developments in 

the field of chemical site-selective protein-modification in the context of their 

biological and therapeutic applications, rather than exhaustively present a large 

number of reactions concerning this topic.8,12 The methods covered in this 

Perspective involve ligation reactions between the side-chain of a natural or 

non-canonical amino acid and a suitable small molecule derivative (Fig. 1).  

 

Study of post-translational protein-modifications (PTMs) 

 

Elucidating the effect of PTMs on protein function can greatly be assisted by 

studying pure protein preparations with precise modifications in vitro. Access to 

modified proteins could permit raising modification-specific antibodies,13 

studying enzymatic activities in vitro or potentially affinity-purifying modification-

specific interaction partners from cell lysates, much like established affinity 

purification protocols.14 However, isolation of single isoforms of modified 

proteins from natural sources in sufficient quantities is often challenging. 

Efficient chemical means to prepare proteins with defined PTMs in vitro are thus 

required. Achieving high precision with respect to the site of the modification is 

typically the prime concern. 

 

One approach towards the chemical preparation of post-translationally modified 

proteins that meets the requirement for precision involves the total or semi-

synthesis of proteins with defined PTMs in vitro.5 Typically, peptide fragments 



bearing PTMs are prepared by solid-phase peptide synthesis, joined through 

native chemical ligation (NCL) reactions and are folded in vitro to give the full-

length protein.5 In one example, through the use of NCL, Danishefsky and co-

workers assembled a single glycoform of human erythropoietin with the 

consensus glycosylation motifs placed at their native sites.15 While this 

approach is feasible for relatively short polypeptide chains, it becomes 

excessively cumbersome for large proteins. Alternatively, recombinantly 

expressed protein fragments with N-terminal Cys or C-terminal protein 

thioesters obtained from split-intein fusions can be directly conjugated to small 

peptide fragments using NCL. This technique termed expressed protein ligation 

(EPL)16 is particularly useful, when the modification is relatively close to the N- 

or C-terminus of a protein. EPL has been widely employed by Muir and co-

workers for the study of the effect of histone tail methylation and acetylation on 

chromatin structure and function.17 In one example, a semi-synthetic strategy 

was used to generate a dimethylated arginine (Arg) at position 42 of histone H3. 

Specifically, the sequence from alanine (Ala) 1 to valine (Val) 46 of histone H3 

was prepared by total synthesis and then joined to a recombinantly expressed 

fragment representing Cys 47 to Ala 135 (Fig. 2a). Dimethylation of Arg 42 was 

shown to stimulate transcription in vitro.18 In many other cases, however, PTMs 

are located at sites in the inner regions of the protein, and a totally synthetic or 

semi-synthetic approach for the preparation of the modified protein becomes 

particularly difficult. In such cases, tools that permit the site-selective installation 

of PTMs on fully folded proteins may allow easier access to the desired 

modified protein product. 

 

Site-selective protein-modification chemistry promises to allow the facile 

preparation of proteins with defined PTMs from full-length recombinantly 

produced precursors whilst still meeting the requirement for introducing the 

PTM at a precise position. So far, however, most chemical site-selective 

protein-modification approaches only allow the introduction of PTM mimics. For 

many applications, e.g., raising antibodies, mimics may, however, be fully 

sufficient.19 Davis and co-workers have recently reported a study in which a 

genetically engineered Cys on the surface of kinase p38 was first converted to 

dehydroalanine (Dha) via a bis-alkylation elimination20 procedure with α,α’-di-



bromo-adipyl(bis)amide 1 and subsequently modified via Michael-addition with 

sodium thiophosphate (Fig. 2b) to mimic a native phosphate group.21 In this 

case, the phospho-Cys variant of p38 was sufficiently similar to the natural 

phospho-Tyr to switch the kinase into its active state. The introduction of 

phosphorylated Tyr analogues has also been achieved through the Staudinger-

Phosphite reaction of azides.22 

 

Furthermore, other PTM mimics such as acetylated or methylated Lys, can be 

installed at Dha by reacting the Michael acceptor with a suitable thiol precursor 

(Fig. 2 c).23 Other approaches to prepare histones with thioether mimics of Lys 

methylation and acetylation involve direct Cys alkylation with suitable 

electrophiles,24,25 mixed disulfide formation,26 and radical-initiated thiol-ene 

reactions (Fig. 2c).27 

 

The chemical introduction of native PTMs into full–length proteins at defined 

positions is more difficult, but has found particular success to site-selective 

installation of ubiquitin into recombinant substrate proteins. One strategy 

consisted of site-directed incorporation of a δ-thiol-Lys derivative into a 

recombinant protein that reacts with a C-terminal thioester of ubiquitin through 

NCL; subsequent desulfurization yields a naturally occurring isopeptide bond 

between substrate proteins (e.g., small ubiquitin-like modifier (SUMO)) and 

ubiquitin (Fig. 2d).28 Alternatively, a genetically encoded orthogonal protection 

and activated ligation strategy consisting of genetic encoding of a protected Lys 

residue has been developed. All the other Lys residues present on the protein 

are then chemically protected followed by orthogonal deprotection of the Lys 

that was genetically introduced. The free single Lys then reacts with a C-

terminal thioester of ubiquitin through NCL to yield a natural isopeptide bond. 

Final global deprotection affords the ubiquitinated protein.29 This approach has 

been used to prepare, for example, mono-ubiquitinated human Dvl2 DIX 

domain at Lys54 and Lys58 providing insight into the effect of ubiquitination into 

oligomerization of these domains.30 Protein substrates may contain multiple 

ubiquitin chains. Polyubiquitination of target proteins at specific sites through 

defined chemical linkages has been achieved, for example, by Cu(I)–catalysed 

azide–alkyne cycloaddition-based polymerization of a ubiquitin containing two 



orthogonal non-canonical amino acids which led to the formation of a protease 

resistant polyubiquitinated protein.31 Alternatively, Brik and co-workers have 

introduced suitable electrophiles at the proximal end on ubiquitin for 

chemoselective reaction with a Cys–tagged -globin protein substrate via 

disulfide or thioether bonds.32 

 

To add further complexity, nature often introduces more than one distinct PTM 

at pre–determined sites on a protein. Yet, with all of the abovementioned 

approaches it is currently difficult to site-selectively install two distinct 

modifications in vitro when modifying only natural amino acids. Therefore, 

further work is needed to develop reactions that allow for the facile installation 

of native PTMs on recombinantly produced full-length proteins and the 

installation of two different PTMs on the same protein substrate.  

 

The ability to genetically encode unnatural amino acids into pre-defined sites on 

proteins can help in achieving site-selective protein-modification at multiple 

positions. As an example of such a strategy, Davis and co-workers have built a 

reconstituted and fully functional mimic of P-selectin glycoprotein ligand 1 

(PSGL-1) containing both a sulfo-Tyr mimic and a trisaccharide moiety. This 

was possible through the placement of a Cys residue and an unnatural 

azidohomoalanine (Aha) amino acid which allowed for sequential mixed 

disulfide and Cu(I)-catalysed azide-alkyne cycloaddition reactions on a 

bacterially expressed protein scaffold.33 

 

As a possible alternative, techniques are now emerging which allow for the 

ribosomal incorporation of amino acids that already carry PTMs into proteins.7,34 

These approaches could allow for the expression of precisely post-

translationally modified proteins in living cells and have great potential to 

facilitate the study of PTMs in their native environment. 

 

Site-selective protein-modification for imaging 

 

Modern biology would be impossible without the ability to label biological 

macromolecules with visible light dyes or radionuclides for diverse imaging 



applications. Very often, purified proteins are conjugated to fluorophores or 

radionuclides in vitro and then used to track the localisation of the labelled 

protein or its binding partners in an experimental system in vitro (e.g., 

immunofluorescence) or in vivo (e.g., nuclear imaging techniques). In vitro, site-

selective labelling is not a strict requirement. Labelled protein reagents are 

typically used in excess and non-binding species are removed in washing steps. 

For in vivo applications, on the other hand, it has been shown that the position 

in which a modification is attached to a protein can have an influence on 

pharmacokinetics and biodistribution.35,36 It is so far poorly understood, however, 

how much or if at all site-selectivity would improve the specificity or sensitivity of 

an imaging agent in vivo and further work is required to address this question. 

 

Site-selectivity becomes strictly important when optical imaging techniques are 

used to obtain a more complex functional readout beyond the mere localisation 

of a single protein. For example, measuring the association of two proteins by 

Förster Resonance Energy Transfer (FRET) will require specific placement of 

the FRET donor and acceptor in sites that are not involved in protein-protein 

interaction yet are close enough for FRET to take place. Site-selective labelling 

of purified protein preparations with FRET-dyes can nowadays routinely be 

achieved using commercially available maleimide, sulfone Michael-acceptor 

and haloacetamide reagents in vitro.  

 

Few approaches, however, exist so far to site-selectively label the same protein 

with two different dyes on two different native amino acids.37 Double labelling is 

required if one for example wants to follow conformational changes of a protein 

by FRET. To achieve this aim, it is very often necessary to first introduce an 

unnatural amino acid into the protein of choice that can bioorthogonally react 

with a suitably modified dye. The second label is then site-selectively introduced 

using, for example, the reaction of maleimides with free Cys.38 Alternatively, the 

introduction of two non-canonical amino acids that are suitable precursors for 

protein double-labelling with a FRET pair is now possible using genetic code 

expansion techniques (Fig. 3d).39  

 



Bioorthogonal chemistry also allows for the site-selective labelling of proteins in 

complex mixtures including live cells and animals. Using an electron demand 

inverse Diels–Alder cycloaddition reaction, Chin and co-workers were able to 

site-selectively fluorescently label the non-native amino acid norbornene, which 

was genetically encoded into a protein expressed on the membrane of a 

mammalian cell (Fig. 3a).40 As an additional benefit, fluorophores can also be 

engineered such that their fluorescence markedly increases upon bioorthogonal 

reaction with the protein bearing the unnatural amino acid handle. It is thought 

that this “turn-on” mechanism may give better signal to background ratios than 

those found when labelling proteins with constitutively fluorescent dyes. 

Bioorthogonal labelling of specific proteins may also be used to detail protein 

uptake and internalization in the context of disease. Using an inverse electron 

demand Diels–Alder cycloaddition strategy it was possible to label in a 

quantitative manner anthrax lethal factor (LF) with a small fluorophore.41 This 

enabled the time-lapse monitoring of anthrax LF internalisation and membrane 

translocation processes in living cells. The abovementioned and other recent 

studies8 provide exciting examples of the localisation and tracking of 

bioorthogonally labelled proteins in living cells or in vivo with minimal disruption 

of the native protein and with an unprecedented molecular precision. 

 

Weissleder and co-workers recently extended the use of bioorthogonal 

chemistry on proteins to nuclear imaging applications. They demonstrated that 

a tumour-homing antibody bearing a trans-cyclooctene (TCO) ring on its surface 

could selectively and rapidly react with a radiolabelled variant of a tetrazine ring 

in an inverse electron demand Diels–Alder reaction in vivo in a mouse xenograft 

tumour, thus making the antibody visible in a PET-scanner (Fig. 3b).42 More 

recently, 18F-labeled antibody fragments for positron emission tomography 

(PET) imaging were generated by installing TCO into an anti-Class II MHC 

single domain antibody followed by reaction with a tetrazine-labeled-18F-2-

deoxyfluoroglucose (FDG).43 The method was found to be particularly rapid and 

efficient with a radiochemical yield of >25% enabling imaging of pancreatic 

tumours in vivo with an increased level of specificity compared to conventional 

18F-FDG imaging. Furthermore, Robillard and colleagues used a similar 

approach where, prior to injection of the radiolabelled tetrazine, residual 



amounts of antibody-TCO in circulation were first removed by injection of a 

tetrazine-functionalized clearing agent.44 This led to a significant increase in 

tumour to healthy tissue ratios, and a predicted 8-fold higher tumour dose 

compared with the directly labeled antibody.  Whilst for most protein-

modification reactions that occur in vitro, speed is not the primary objective, the 

extremely fast kinetics of the inverse electron demand Diels–Alder reaction 

makes it particularly suitable for in vivo applications where reagents may rapidly 

be excreted through liver or kidney, however an improved understanding of the 

stability of the trans double bond of TCO that may undergo isomerization in vivo 

will be required. Alternatively, it may also be possible to encode tetrazine motifs 

into the antibody followed by ligation with strained alkene probes avoiding long 

exposure of the trans double bond to in vivo conditions.45 

 

In the coming years, one of the most exciting applications of bioorthogonal 

protein-labelling chemistry may well be the ability to construct functional optical 

sensors to measure diverse physiological parameters inside the dynamic 

environment of living cells and even in animals. For example, Chen and co-

workers have recently described the modification of the acid-sensitive 

chaperone HdeA with an environment-sensitive fluorophore inside the 

periplasm of E. Coli to create a biosensor for extremely low pH values (Fig. 

3c).46 Upon lowering the pH from 7 to 2, HdeA adopts a highly plastic structure 

making hydrophobic residues accessible to the fluorophore, which is reflected in 

an increase in fluorescence. Even bioorthogonal dual modification of a single 

protein with two distinct dyes has recently been achieved. Impressively, Chin’s 

group has developed an optimised translational system for proteins containing 

non-natural amino acids in E. coli that enable the placement of two distinct non-

native amino acids at two pre-determined sites that could be modified with 

mutually and bioorthogonal reactions (Fig. 3d). Site-selective, bioorthogonal 

dual labelling of calmodulin (CaM) with a FRET pair made it possible to follow 

alterations in calmodulin conformation inside the living cell in response to 

changes in Ca2+ concentrations.39  

 

These examples demonstrate that bioorthogonal protein-modification chemistry 

is a very promising tool for the construction of protein biosensors in vivo. Protein 



biosensors have the unique potential to give an optical readout in response to 

physiological changes inside living cells and organisms. These sensors will 

allow biologists to use imaging techniques to study complex processes inside 

living cells and even whole organisms in a spatiotemporally controlled manner. 

 

Modulating the properties of protein therapeutics 

 

Therapeutic proteins are a rapidly growing class of drugs.47 Unfavourable 

pharmacokinetics and immunogenicity, however, often hamper the efficacy of 

recombinant protein therapeutics in vivo. Therapeutic proteins may be quickly 

degraded by proteases or excreted by the kidneys leading to a rapid drop in 

plasma concentration after administration of the drug. A strong immune reaction 

may also be a life threatening complication akin to an allergic shock. 

Alternatively, anti-drug antibodies may inactivate the therapeutic protein and 

lead to treatment resistance. One of the first applications of protein-modification 

chemistry in the context of drug development was the conjugation of protein 

therapeutics with long polyethylene glycol (PEG) chains to extend their plasma 

circulation half-life and attenuate their immunogenicity in vivo.48 By attaching a 

long unstructured polymer chain the hydrodynamic radius of the macromolecule 

is increased thus reducing renal filtration. At the same time, the PEG polymer 

physically shields the protein from degradation by proteases and recognition by 

the immune system. 

 

Many FDA-approved PEGylated protein drugs are still produced using non-site-

selective modification chemistry,49 which can potentially produce inactive 

protein species. Indeed, many marketed PEGylated drugs are less active than 

their unmodified counterparts.50 For this reason, site-selective PEGylation 

should be preferred and site-selective protein-modification chemistry is 

increasingly used for the PEGylating of proteins.51 

 

In one of the first examples of site-selective PEGylation, a N-terminal serine 

residue was oxidized to the corresponding aldehyde using sodium periodate 

followed by subsequent oxime ligation with an aminoxy PEG derivative (Fig. 

4a).4 The modified proteins, interleukin (IL)-8, G-CSF, and IL-1r fully retained 



their activity after PEGylation. Alternatively, Francis and co-workers reported a 

pyridoxal-phosphate (PLP) mediated transamination reaction that introduces 

reactive aldehydes at the N-termini (Fig. 4a).52 In a similar manner, subsequent 

reaction aminoxy-PEG derivative at acidic pH 6.5 provides the corresponding 

oxime product. These methods require however chemical manipulation of the 

N-terminal groups to introduce a reactive aldehyde functionality. More recently, 

the same research group reported a direct site-selective method that enable 

PEGylation of native proteins.53 The method uses 2-pyridinecarboxylaldehydes 

that selective react at the N-termini at neutral pH. The reaction proceeds via the 

formation of the imine followed by the attack of the neighbouring amide nitrogen 

in the protein backbone leading to the formation of a stable imidazolidinone 

conjugate (Fig. 4b). This methodology may be applied to a wide range of native 

proteins with the exception of those where the N-terminus is acylated, those 

with proline in the second position or those where the N-termini are hindered. 

However, in some instances the modification of internal sites on the protein may 

be preferred. Site-selective PEGylation of proteins may also be achieved using 

genetic encoding non-canonical amino acids (ncAA) bearing unique reactive 

handles. Incorporation of para-acetylphenylalanine (pAF) into human growth 

hormone (hGH) followed by reaction with aminooxy-PEG derivatives at pH 6 

enabled the construction of hGH variants with PEG at 20 different pre-

determined sites (Fig. 4c).54 The PEGylated construct of hGH modified at site 

35 demonstrated to possess improved pharmacokinetics in rats and 

comparable efficacy in clinical studies performed in GH-deficient adults but with 

reduced injection frequency. This example is illustrative of the advantage of 

using site-selective PEGylation methods that allow to perform structure-activity 

relationships of modified proteins for optimal pharmacokinetics while retaining 

their biological activity and improving clinical application. 

 

Antibody conjugation for delivery of cytotoxic drugs  

 

More recently, the conjugation of monoclonal antibodies directed against 

tumour marker proteins with highly potent cytotoxic drugs is emerging as a 

strategy to create antibodies with improved killing potential towards malignant 

cells or even turn antibodies lacking any cytotoxic activity into potent 



antineoplastic agents.47 Initial work on antibody-drug conjugates (ADCs) relied 

on poorly site-selective conjugation strategies to attach drugs to antibodies 

yielding a heterogeneous mixture of antibodies with different drug loading at 

different sites.55-57 

 

It was soon found that both the number of drugs per antibody and the 

attachment site could have a profound effect on the pharmacokinetics, efficacy 

and toxicity of an ADC.36,58 A high ratio of drug to antibody (typically > 2) may 

lead to reduced thermostability of the ADC56 and result in a faster clearance 

from the bloodstream.57 ADCs with high drug to antibody ratio (DAR) were also 

found to have a smaller therapeutic window than ADCs with low DARs.57 

Additionally the site of drug attachment can have a profound effect on clearance 

kinetics and off-target ADC toxicity36,58 as well as in plasma stability and 

efficacy.59 These observations demonstrate the importance of using site-

selective protein-modification chemistries for the synthesis of homogenous 

protein conjugate therapeutics. 

 

Currently, the most commonly used approach for the site-selective generation 

of antibody-conjugate therapeutics is the Michael-addition reaction of the thiol 

side-chain of genetically engineered Cys residues on the antibody’s surface 

with maleimides (Fig. 5a).3 Protocols have been established which allow for the 

selective reduction of engineered Cys whilst leaving native disulfide bonds on 

the antibody intact.36 Using carefully optimized conditions, ADC preparations 

containing >90% ADCs with exactly two drugs per antibody could be 

prepared.36 

 

A potential drawback of maleimide chemistry is related to the fact that the 

thioether bond formed between the protein’s Cys and the maleimide may not be 

fully stable in plasma (Fig. 5a).58 Conjugates can undergo a retro-Michael 

addition releasing the maleimide from the carrier protein under physiological 

conditions.60 In the case of ADCs, the product of this reaction would be a highly 

potent cytotoxic drug that can kill cells in healthy tissues. Indeed, off-target 

toxicity is a pressing problem in the clinical development of ADCs. Different 

strategies have thus been pursued to improve the stability of maleimide 



conjugates. Conjugation sites have been placed in close proximity to positively 

charged amino acid residues, which promote the hydrolysis and ring-opening of 

maleimides to give more stable species.58 Linkers containing primary amines in 

close proximity to a malemide that undergo rapid hydrolysis to the more stable 

ring-opened form have also been proposed (Fig. 5a).61,62 The resulting ADCs 

were demonstrated to be more stable in plasma and more efficacious in vivo 

while reducing the side effects observed when using traditional maleimides. 

 

A number of reactions for the modification of Cys that inherently give more 

stable thioether bonds, such as the Julia–Kocienski type modification developed 

by Barbas and co-workers (Fig. 5a)63 or the Michael-addition of thiol 

nucleophiles to Dha developed by Davis and co-workers (Fig. 5a),64 may also 

be exploited for the synthesis of ADCs. These technologies are fairly novel, 

however, and we are not aware of any industrial ADC discovery programs using 

them thus far. 

 

As an alternative to the chemical modification of genetically incorporated Cys 

residues on monoclonal antibody (mAb) surfaces, one can incorporate 

unnatural amino acids into mAbs and modify them using bioorthogonal 

reactions. This approach has the potential advantage of yielding highly 

homogeneous protein conjugate preparations and antibody-drug linkages with 

high stability.  

 

Schultz and co-workers have genetically incorporated para-acetylphenylalanine 

(pAF) into mAbs and reacted the side chain ketone with an aminoxy-modified 

version of the potent cytotoxic drug monomethyl auristatin E (MMAE) 3 for the 

preparation of ADCs (Fig. 5b i).65 The same antibody was expressed with two 

Cys in the same positions as the pAF and conjugated with a maleimide-

containing version of MMAE. The pAF-modified ADC had a drug-to-antibody 

ratio (DAR) of exactly 2.0 whereas attempts to selectively modify the two 

genetically introduced Cys on the mAb using a maleimide-containing derivative 

of MMAE gave a DAR of 2.3. The homogenous pAF-modified ADCs were found 

to be more stable than conventional maleimide linkages in vivo.66 These 



characteristics resulted in an improved efficacy of the bioorthogonally-modified 

ADC in xenograft-tumour-bearing mice. 

 

Bertozzi and co-workers have reported a site-selective protein-ligation where 

aldehyde-containing proteins rapidly react with 3-methylhydroxylamino indoles 

in a Pictet–Spengler type mechanism.67 A variation of the methodology, the 

hydrazino-iso-Pictet–Spengler (HIPS) ligation, yields highly stable C–C linkages 

between aldehyde-containing antibodies and drugs containing 3-

methylhydrazino indole-groups 4 (Fig. 5b ii). As such, this methodology has 

been used for the construction of ADCs.68 By performing HIPS conjugations at 

different locations on an IgG1 backbone, it was shown that the site of 

conjugation influences dramatically the in vivo efficacy and pharmacokinetic 

parameters.68 In addition, the stable conjugates built using HIPS conjugation 

strategy exhibited an improved safety profile in rats when compared with those 

conjugates prepared using a non-site-selective lysine conjugation strategy.  

 

Collectively, these observations highlight the fact that site-selective protein-

conjugation reactions can vastly improve the therapeutic efficacy of protein-

conjugate therapeutics when compared to protein conjugates that were 

synthesised using non-selective bioconjugation chemistry, at least within animal 

models of disease. Although clinical proof is not likely within the next few years, 

we expect that protein conjugate therapeutics synthesised using site-selective 

modification reactions that yield homogenous and more stable products will also 

be more efficacious and tolerable to patients than currently used heterogeneous 

and potentially unstable conjugates. 

 

The future of bioorthogonal chemistry on protein surfaces 

 

Evidence is now accumulating that chemistry on protein surfaces will in the 

future go far beyond bioconjugation. In particular the combination of genetic 

code expansion for the incorporation of non-canonical amino acids into proteins 

with bioorthogonal chemistry could enable tantalizing new applications. For 

example, the genetic incorporation of caged amino acids that can be 

deprotected using bioorthogonal reactions holds great potential for the precise 



spatiotemporal control of protein function in vivo. Indeed, a palladium-mediated 

depropargylation has recently been achieved within a living cell and could be 

used to restore the function of a propargyl-protected protein (Fig. 6a).69 In 

another example, a tetrazine-triggered protein decaging method based on the 

inverse electron-demand Diels–Alder reaction was successfully employed for 

the bioorthogonal deprotection of a caged Lys within living cells (Fig. 6b).70 The 

inverse electron-demand Diels–Alder reaction elimination occurs through the 

conversion of the dihydropyridazine adduct, formed from the [4+2] cycloaddition 

between a 1,2,4,5-tetrazine and TCO, to a pyridazine with elimination of CO2 

and an amine derivative. 

 

This inverse electron demand Diels–Alder elimination reaction also was used by 

Robillard and co-workers in a small molecule pro-drug strategy. A carbamate 

between 1-hydroxy-trans-cyclooctene (HO-TCO) and the amino sugar of 

doxorubicin (DOXO), a chemotherapeutic agent commonly used for the 

treatment of cancer, was prepared.71 When reacting the DOXO derivative with a 

tetrazine reagent in an inverse electron demand Diels-Alder fashion, the 

dihydropyridazine product undergo conversion into a conjugated pyridazine with 

consequent elimination of the NH2-substituted DOXO and CO2.
71 It remains to 

be demonstrated that this strategy can be expanded to antibodies for in vivo 

bioorthogonal elimination and delivery of drugs. For example, by incorporating a 

DOXO HO-TCO carbamate to a tumour-homing antibody, one could selectively 

transport the inactivated drug into the tumour and release it selectively by 

injecting tetrazine as a trigger substance. This in turn would decrease exposure 

of healthy tissues to DOXO and reduce treatment-associated side effects. 

Bioorthogonal chemistry on protein surfaces may thus permit the development 

of novel medicines with a spatially and temporally defined action for the 

treatment of cancer and other debilitating diseases. 

 

Alternatively, genetic encoding of photocaged variants of natural amino acids 

(e.g., Cys and Tyr) could be used to the same aim. In one case, 

photodeprotection of photocaged Cys results in rapid activation of TEV protease 

within living cells in their native environment (Fig. 6c).72 Similarly, deprotection 

of a key photocaged Tyr residue was used to control phosphorylation and signal 



transduction.73 It will emerge over the coming years how far and in which 

settings these techniques are superior to currently used methods for the control 

of protein function, for example, at the transcription level with doxocyclin 

inducible promoters, and for in situ pro-drug antibody-based delivery strategies. 

 

Conclusions and outlook 

 

Site-selective protein-modification chemistry can enable the in vitro and in vivo 

study of PTMs, construction of protein-based sensors for biological applications 

or the preparation of powerful new protein therapeutics. Other applications that 

were not addressed in detail here may be found in the fields of material 

sciences or regenerative medicine where the synthesis of chemically defined 

scaffolds containing protein building blocks (e.g., factors for cell attachment and 

growth) may play an important role.  

 

Site-selective protein-modification chemistry comes in two flavours: reactions 

with naturally occurring but lowly abundant amino acids is typically limited to the 

modification of isolated proteins in vitro. Methods that allow the modification of 

proteins with diverse synthetic molecules ranging from PTMs or their mimics to 

fluorophores and drugs with high accuracy with respect to the site of 

modification are now available.  The use of low reagent’s concentration and the 

stability of the bond between protein and the modification are primary concerns 

for the modification of proteins in vitro (e.g., for ADCs) and methods that satisfy 

this requirement are now becoming available. The advantage of modifying 

naturally occurring amino acids lies in the fact that standard methods of protein 

engineering can be easily employed to generate the protein starting material.  

 

Bioorthogonal ligation reactions, on the other hand, are a type of site-selective 

protein-modification chemistry directed at unnatural functionalities introduced 

into pre-determined sites on proteins often using genetic code expansion 

techniques. Bioorthogonal ligation reactions are generally more versatile than 

classical site-selective protein-modification reactions directed at natural 

proteinogenic amino acids. In particular, bioorthogonal ligation chemistry may 

allow for the site-selective modification of proteins even in complex protein 



mixtures, where rare amino acids traditionally used for site-selective protein-

modification (i.e., most commonly Cys) are present in multiple copies. It now 

even allows for the site-selective modification of individual proteins in cells and 

living organisms where high reaction speeds on top of high selectivity may be 

required.  

 

Bioorthogonal protein-modification chemistry may also be particularly suited to 

site-selectively introduce two or even more modifications on the same protein 

opening new doors to interrogate protein structure, dynamics and function in 

their native environment. The main drawback of bioorthogonal approaches 

remains the need for introducing non-natural amino acids into the target protein 

prior to modification but efficient methods even for the large-scale production of 

proteins incorporating non-native amino acids are now becoming available.66,74 

Together with efforts to integrate optimised genetic encoding expression 

systems for researchers including the Unnatural Protein Facility, located at 

Oregon State University (OSU),75 such techniques will hopefully find increased 

implementation in laboratories.  

 

Modern site-selective, bioorthogonal protein-modification techniques have 

shown potential to provide molecular insights in numerous proof-of-concept 

studies and enabled the construction of more efficient and safer protein 

therapeutics. As the number of reactions at our disposal for the site-selective 

and bioorthogonal modification of proteins increases, we anticipate that the 

widespread use of bioorthogonal protein-modification will generate fundamental 

new basic biology knowledge, imaging and therapeutic applications with 

unprecedented precision. It is, however, key to make these methodologies 

available in an easily usable format to as wide a research community as 

possible. 
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Figures Captions 

 

Figure 1. Conceptual strategy to achieve site-selective protein-

modification using biocompatible chemical reactions in vitro and in vivo. 

Typically, site-selective chemical modification of proteins can be achieved either 

i) on a natural amino acid side chain with unique reactivity (e.g., Cys) of which a 

single copy is already present on the protein of interest or may be introduced by 

site-directed mutagenesis or ii) on a non-canonical amino acid featuring a side 

chain with a functional group that is normally not present in living systems but 

can be introduced using genetic encoding procedures (e.g., azide, alkyne, 

ketone, alkene, tetrazine). In the case of natural amino acid side chains, one is 

limited to the modification of purified proteins in a test tube as many other 

biomolecules may display the same functionality in a complex protein mixture. 

Using non-canonical amino acids, on the other hand, one can devise reactions 

that are selective over all naturally occurring amino acid side chains thus 

permitting site-selective modification of individual proteins in complex mixtures 

and living organisms. Upon choice of the functionality to be chemically targeted, 

reaction with a suitable modified molecule of interest (e.g., PTM, fluorescent 

label or cytotoxic drug) must proceed in a chemoselective manner under 

physiological conditions. 

 

Figure 2. Chemical site-selective installation of PTMs at pre-determined 

sites on proteins. a, A semi-synthetic strategy for the generation of a histone 

protein with a dimethylated Arg residue at position 42. Briefly, histone 

H3R42Me2 was assembled from two synthetic fragments and one recombinant 

fragment through the use of NCL and EPL. The final step involves selective 

radical-mediated desulfurization of the two Cys residues at the ligation sites into 

the native Ala residues to give the final semi-synthetic H3R42Me2. b, Site-

selective installation of a phosphorylation mimic in the activation loop of protein 

kinase p38α. This was achieved by replacing the native Tyr residue with a Cys 

residue, which was subsequently chemically converted into Dha. Michael-

addition of sodium thiophosphate enables access to a fully functional synthetic 

phospho-Cys mimic capable of switching the kinase to an active state. c, 

Chemical installation of thioether mimics of acetylated or methylated Lys at pre-



determined sites on histone proteins for the study of genetic regulation. 

Chemically defined PTMs can be achieved directly on Cys by alkylation with 

suitable electrophiles, mixed disulfide formation or radical-initiated thiol-ene 

reactions. Alternatively, Cys can be converted to Dha followed by Michael-

addition of suitable nucleophiles. Through this strategy, it is possible to create 

fully functional mimics of PTMs on histone proteins. d, Combined genetic code 

expansion with traceless NCL for the formation of isopeptide linked ubiquitin 

and protein substrates.  

 

Figure 3. Bioorthogonal protein-modification chemistry for live cell 

imaging applications. a, Genetic encoding of a norbornene amino acid into a 

mammalian cell-surface protein followed by selective labelling with a tetrazine-

modified version of the fluorescent dye TAMRA-X. b, Trans-cyclooctyne (TCO) 

was conjugated to a tumour-homing antibody and injected into a tumour-bearing 

mouse. Once the antibody had accumulated inside the tumour and cleared from 

healthy organs, a radiolabelled tetrazine was injected. The tetrazine and TCO 

rapidly reacted leading to retention of radioactivity at the tumour site that could 

be visualized by radio-imaging approaches. c, Encoding of an azido-amino acid 

into the acid-sensitive chaperone HdeA inside the E. coli periplasm. 

Bioorthogonal attachment of an alkyne derivative of the environmentally 

sensitive dye 4-N,N-dimethylamino-1,8-naphthalimide (4-DMN) to the protein 

was achieved using Cu(I)-catalyzed azide-alkyne cycloaddition. Upon pH 

dependent conformational changes in HdeA, 4-DMN changes its fluorescence 

properties enabling the measurement of changes in local pH. d, Simultaneous 

genetic encoding of two distinct non-natural amino acids into the same protein. 

The tetrazine and norbornene amino acids did not react with each other but the 

tetrazine selectively reacted with a strained cyclooctyne ring and the 

norbornene with a different tetrazine. This mutually orthogonal and 

bioorthogonal pair of reactions allowed for the site-selectively placement of two 

distinct fluorescent dyes onto the surface of calmodulin in E. coli and measure 

its conformational changes in response to Ca2+ stimuli by FRET.  

 

Figure 4. Example of strategies to achieve site-selective PEGylation of 

proteins. a, Examples of PEGylation of the N-termini using oxime ligation. N-



terminal aldehydes can be either generated through oxidation using sodium 

periodate or using pyridoxal-phosphate (PLP) promoted transamination. 

Subsequent oxime ligation with aminoxy PEG derivatives afford the N-terminally 

PEGylated protein. b, Site-selective attachment of 2-pyridinecarboxylaldehydes 

PEG derivatives to native proteins at neutral pH. c, Genetic encoding of pAF 

into hGH at pre-determined site 35 followed by oxime ligation with a aminoxy 

PEG derivative at acidic pH. 

 

Figure 5. Site-selective protein-modification reactions for the synthesis of 

antibody-drug conjugates (ADCs). a, Reactions selective for Cys. The 

classical chemoselective reaction of maleimides with thiols is widely used for 

the site-selective synthesis of ADCs. The initial product of the reaction is now 

known to be unstable and can either regenerate the starting materials through a 

retro-Michael addition or hydrolyze to form the more stable ring-opened product. 

Ring opening can be facilitated by placing a positively charged amino acid in 

close vicinity to the modified Cys on the protein surface. Alternatively, a primary 

amine can be placed next to the maleimide on the linker between drug and 

antibody. Conversion of Cys into Dha on protein surfaces using 1 followed by 

Michael-addition with thiol-containing drugs results in a very stable thioether 

bond. Similarly, the Julia–Kocienski-type reaction of a protein surface Cys with 

a methylsulfonylbenzothiazole reagent 2 yields a site-selective protein 

conjugation product that is intrinsically very stable in plasma and may be very 

useful for the synthesis of ADCs. b, Bioorthogonal reactions selective for non-

natural amino acids. i, Genetically introduced pAF on the antibody surface can 

selectively react with hydroxylamine-containing drugs 3 to form a very stable 

linkage. ii, Genetically or enzymatically introduced aldehydes on the antibody 

surface can selectively react with 4 in a Pictet–Spengler type reaction to form a 

very stable ADC. 

 

Figure 6. Bioorthogonal approaches to in situ protein activation. a, A 

biocompatible palladium catalyst that cleave the propargyl carbamate group of a 

protected Lys analogue to generate a free lysine was used to modulate the 

function of an intracellular protein in a gain-of-function fashion. b, A TCO-caged 

Lys on the active site of a protein renders the protein inactive. Upon reaction 



with 3,6-dimethyl-1,2,4,5-tetrazine, rapid inverse electron demand Diels–Alder 

elimination took place enabling bioorthogonal decaging and intracellular 

activation of the protein target in its native cellular context. c, Photodeprotection 

of a caged Cys that was genetically encoded into TEV to reveal the native 

protein in live cells. 


