155 research outputs found

    Plasticity performance of Al0.5CoCrCuFeNi high-entropy alloys under nanoindentation

    Get PDF
    The statistical and dynamic behaviors of the displacement-load curves of a high-entropy alloy Al0.3CoCrCuFeNi were analyzed for the nanoindentation performed at two temperatures. Critical behavior of serrations at room temperature and chaotic flows at 200 degrees C were detected. These results are attributed to the interaction among a large number of slip hands. For the nanoindentation at room temperature recurrent partial events between slip hands introduce a hierarchy of length scales leading to a critical state. For the nanoindentation at 200 degrees C there is no spatial interference between two slip hands which is corresponding to the evolution of separated trajectory of chaotic behavior

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN

    Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

    Get PDF
    For abstract see published article

    Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC

    Get PDF
    The performance of identification algorithms (“taggers”) for hadronically decaying top quarks and W bosons in pp collisions at √s=13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb −1 for the tt ¯ and γ+jet and 36.7 fb −1 −1 for the dijet event topologies

    Measurements of the charge asymmetry in top-quark pair production in the dilepton final state at s √ =8  TeV with the ATLAS detector

    Get PDF
    Measurements of the top-antitop quark pair production charge asymmetry in the dilepton channel, characterized by two high-pT leptons (electrons or muons), are presented using data corresponding to an integrated luminosity of 20.3  fb−1 from pp collisions at a center-of-mass energy s√=8  TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. Inclusive and differential measurements as a function of the invariant mass, transverse momentum, and longitudinal boost of the tt¯ system are performed both in the full phase space and in a fiducial phase space closely matching the detector acceptance. Two observables are studied: AℓℓC based on the selected leptons and Att¯C based on the reconstructed tt¯ final state. The inclusive asymmetries are measured in the full phase space to be AℓℓC=0.008±0.006 and Att¯C=0.021±0.016, which are in agreement with the Standard Model predictions of AℓℓC=0.0064±0.0003 and Att¯C=0.0111±0.0004

    In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector

    Get PDF
    The response of the ATLAS detector to largeradius jets is measured in situ using 36.2 fb−1 of √s = 13 TeV proton–proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transversemomentum and mass responses in simulations are found to be about 2–3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (pT). The precision of the relative jet energy scale is 1–2% for 200 GeV < pT < 2 TeV, while that of the mass scale is 2–10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10–15% over the same pT range

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations

    Evidence for electroweak production of W±W±jj in pp collisions at s√=8  TeV with the ATLAS detector

    Get PDF
    This Letter presents the first study of W±W±jj, same-electric-charge diboson production in association with two jets, using 20.3  fb−1 of proton-proton collision data at s√=8  TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with two reconstructed same-charge leptons (e±e±, e±μ±, and μ±μ±) and two or more jets are analyzed. Production cross sections are measured in two fiducial regions, with different sensitivities to the electroweak and strong production mechanisms. First evidence for W±W±jj production and electroweak-only W±W±jj production is observed with a significance of 4.5 and 3.6 standard deviations, respectively. The measured production cross sections are in agreement with standard model predictions. Limits at 95% confidence level are set on anomalous quartic gauge couplings

    Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum, and jets at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search has been performed for pair production of heavy vectorlike down-type (B) quarks. The analysis explores the lepton-plus-jets final state, characterized by events with one isolated charged lepton (electron or muon), significant missing transverse momentum, and multiple jets. One or more jets are required to be tagged as arising from b quarks, and at least one pair of jets must be tagged as arising from the hadronic decay of an electroweak boson. The analysis uses the full data sample of pp collisions recorded in 2012 by the ATLAS detector at the LHC, operating at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb −1 . No significant excess of events is observed above the expected background. Limits are set on vectorlike B production, as a function of the B branching ratios, assuming the allowable decay modes are B → Wt/Zb/Hb. In the chiral limit with a branching ratio of 100% for the decay B → Wt, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 810 GeV (760 GeV). In the case where the vectorlike B quark has branching ratio values corresponding to those of an SU(2) singlet state, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 640 GeV (505 GeV). The same analysis, when used to investigate pair production of a colored, charge 5/3 exotic fermion T 5/3 , with subsequent decay T 5/3 → Wt, sets an observed (expected) 95% C.L. lower limit on the T 5/3 mass of 840 GeV (780 GeV)

    Search for scalar diphoton resonances in the mass range 65-600 GeV with the ATLAS detector in pp collision data at √s = 8  TeV

    Get PDF
    A search for scalar particles decaying via narrow resonances into two photons in the mass range 65–600 GeV is performed using 20.3  fb−¹ of √s=8  TeV pp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches
    corecore