1,098 research outputs found

    The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa

    Get PDF
    Chronic wounds pose an increasingly significant worldwide economic burden (over £1 billion per annum in the UK alone). With the escalation in global obesity and diabetes, chronic wounds will increasingly be a significant cause of morbidity and mortality. Cellulose nanofibrils (CNF) are highly versatile and can be tailored with specific physical properties to produce an assortment of three-dimensional structures (hydrogels, aerogels or films), for subsequent utilization as wound dressing materials. Growth curves using CNF (diameter 0.05) over 24 h. These data demonstrate the potential of nanocellulose materials in the development of novel dressings that may afford significant clinical potential

    Uptake routes and toxicokinetics of silver nanoparticles and silver ions in the earthworm Lumbricus rubellus

    Get PDF
    Current bioavailability models, such as the free ion activity model and biotic ligand model, explicitly consider that metal exposure will be mainly to the dissolved metal in ionic form. With the rise of nanotechnology products and the increasing release of metal-based nanoparticles (NPs) to the environment, such models may increasingly be applied to support risk assessment. It is not immediately clear, however, whether the assumption of metal ion exposure will be relevant for NPs. Using an established approach of oral gluing, a toxicokinetics study was conducted to investigate the routes of silver nanoparticles (AgNPs) and Ag+ ion uptake in the soil-dwelling earthworm Lumbricus rubellus. The results indicated that a significant part of the Ag uptake in the earthworms is through oral/gut uptake for both Ag+ ions and NPs. Thus, sealing the mouth reduced Ag uptake by between 40% and 75%. An X-ray analysis of the internal distribution of Ag in transverse sections confirmed the presence of increased Ag concentrations in exposed earthworm tissues. For the AgNPs but not the Ag+ ions, high concentrations were associated with the gut wall, liver-like chloragogenous tissue, and nephridia, which suggest a pathway for AgNP uptake, detoxification, and excretion via these organs. Overall, the results indicate that Ag in the ionic and NP forms is assimilated and internally distributed in earthworms and that this uptake occurs predominantly via the gut epithelium and less so via the body wall. The importance of oral exposure questions the application of current metal bioavailability models, which implicitly consider that the dominant route of exposure is via the soil solution, for bioavailability assessment and modeling of metal-based NPs

    Developmentally regulated expression of hemoglobin subunits in avascular tissues

    Full text link
    We investigated the spatio-temporal profile of hemoglobin subunit expression in developing avascular tissues. Significant up-regulation of hemoglobin subunits was identified in microarray experiments comparing blastocyst inner cell masses with undifferentiated embryonic stem (ES) cells. Hemoglobin expression changes were confirmed using embryoid bodies (derived from in vitro differentiation of ES cells) to model very early development at pre-vascular stages of embryogenesis; i.e. prior to hematopoiesis. We also demonstrate, using RT-PCR, Western blotting and immunocytochemistry, expression of adult and fetal mouse hemoglobin subunits in the avascular ocular lens at various stages of development and maturation. Hemoglobin proteins were expressed in lens epithelial cells (cytoplasmic) and cortical lens fiber cells (nuclear and cell-surface-associated); however, a sensitive heme assay demonstrated negligible levels of heme in the developing lens postnatally. Hemoglobin expression was also observed in the developing eye in corneal endothelium and retinal ganglion cells. Gut sections showed, in addition to erythrocytes, hemoglobin protein staining in rare, individual villus epithelial cells. These results suggest a paradigm shift: hemoglobin subunits are expressed in the avascular lens and cornea and in pre-hematopoietic embryos. It is likely, therefore, that hemoglobin subunits have novel developmental roles; the absence of the heme group from the lens would indicate that at least some of these functions may be independent of oxygen metabolism. The pattern of expression of hemoglobin subunits in the perinuclear region during lens fiber cell differentiation, when denucleation is taking place, may indicate involvement in the apoptosis-like signaling processes occurring in differentiating lens fiber cells

    A low-molecular-weight alginate oligosaccharide disrupts pseudomonal microcolony formation and enhances antibiotic effectiveness

    Get PDF
    In chronic respiratory disease the formation of dense, 3-dimensional ‘micro colonies' by Pseudomonas aeruginosa within the airway plays an important role in contributing to resistance to treatment. An in vitro biofilm model of pseudomonal microcolony formation using artificial sputum (AS) medium was established to study the effects of low molecular weight alginate oligomers (OligoG CF-5/20) on pseudomonal growth, microcolony formation and the efficacy of colistin. The studies employed clinical cystic fibrosis (CF) isolates (n=3) and reference non-mucoid and mucoid multi-drug resistant (MDR) CF isolates (n=7). Bacterial growth, biofilm development and disruption were studied using cell-viability assays and image analysis using scanning electron- and confocal laser scanning microscopy. Pseudomonal growth in AS medium was associated with increased ATP production (p10 μm) microcolonies. In conventional growth medium, colistin retained an ability to inhibit growth of planktonic bacteria, although the MIC was increased (0.1 to 0.4 μg/ml) in AS medium versus. In contrast, in an established biofilm model in the AS medium, the efficacy of colistin was decreased. OligoG CF-5/20 (≥2%) treatment however, induced dose-dependent biofilm disruption (p0.2%; p<0.05) reductions in pseudomonal quorum sensing signaling. These findings reinforce the potential clinical significance of microcolony formation in the CF lung, and highlight a novel approach to treat MDR pseudomonal infections

    Is there scope for community health nurses to address lifestyle risk factors? : the community nursing SNAP trial

    Get PDF
    Background: This paper examines the opportunity and need for lifestyle interventions for patients attending generalist community nursing services in Australia. This will help determine the scope for risk factor management within community health care by generalist community nurses (GCNs).Methods: This was a quasi-experimental study conducted in four generalist community nursing services in NSW, Australia. Prior to service contacts, clients were offered a computer-assisted telephone interview to collect baseline data on socio-demographics, health conditions, smoking status, physical activity levels, alcohol consumption, height and weight, fruit and vegetable intake and 'readiness-to-change' for lifestyle risk factors.Results: 804 clients participated (a response rate of 34.1%). Participants had higher rates of obesity (40.5% vs 32.1%) and higher prevalence of multiple risk factors (40.4% vs 29.5%) than in the general population. Few with a SNAPW (Smoking-Nutrition-Alcohol-Physical-Activity-Weight) risk factor had received advice or referral in the previous 3 months. The proportion of clients identified as at risk and who were open to change (i.e. contemplative, in preparation or in action phase) were 65.0% for obese/overweight; 73.8% for smokers; 48.2% for individuals with high alcohol intake; 83.5% for the physically inactive and 59.0% for those with poor nutrition.Conclusions: There was high prevalence of lifestyle risk factors. Although most were ready to change, few clients recalled having received any recent lifestyle advice. This suggests that there is considerable scope for intervention by GCNs. The results of this trial will shed light on how best to implement the lifestyle risk factor management in routine practice

    Cryopreservation of human cancers conserves tumour heterogeneity for single-cell multi-omics analysis

    Get PDF
    Background: High throughput single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for exploring cellular heterogeneity among complex human cancers. scRNA-Seq studies using fresh human surgical tissue are logistically difficult, preclude histopathological triage of samples, and limit the ability to perform batch processing. This hindrance can often introduce technical biases when integrating patient datasets and increase experimental costs. Although tissue preservation methods have been previously explored to address such issues, it is yet to be examined on complex human tissues, such as solid cancers and on high throughput scRNA-Seq platforms. Methods: Using the Chromium 10X platform, we sequenced a total of ~ 120,000 cells from fresh and cryopreserved replicates across three primary breast cancers, two primary prostate cancers and a cutaneous melanoma. We performed detailed analyses between cells from each condition to assess the effects of cryopreservation on cellular heterogeneity, cell quality, clustering and the identification of gene ontologies. In addition, we performed single-cell immunophenotyping using CITE-Seq on a single breast cancer sample cryopreserved as solid tissue fragments. Results: Tumour heterogeneity identified from fresh tissues was largely conserved in cryopreserved replicates. We show that sequencing of single cells prepared from cryopreserved tissue fragments or from cryopreserved cell suspensions is comparable to sequenced cells prepared from fresh tissue, with cryopreserved cell suspensions displaying higher correlations with fresh tissue in gene expression. We showed that cryopreservation had minimal impacts on the results of downstream analyses such as biological pathway enrichment. For some tumours, cryopreservation modestly increased cell stress signatures compared to freshly analysed tissue. Further, we demonstrate the advantage of cryopreserving whole-cells for detecting cell-surface proteins using CITE-Seq, which is impossible using other preservation methods such as single nuclei-sequencing. Conclusions: We show that the viable cryopreservation of human cancers provides high-quality single-cells for multiomics analysis. Our study guides new experimental designs for tissue biobanking for future clinical single-cell RNA sequencing studies

    Researching Memory in Early Modern Studies

    Get PDF
    This essay pursues the study of early modern memory across a chronologically, conceptually and thematically broad canvas in order to address key questions about the historicity of memory and the methodologies of memory studies. First, what is the value for our understanding of early modern memory practices of transporting the methodologies of contemporary memory studies backwards, using them to study the memorial culture of a time before living memory? Second, what happens to the cross-disciplinary project of memory studies when it is taken to a distant period, one that had its own highly self-conscious and much debated cultures of remembering? Drawing on evidence and debates from a range of disciplinary locations, but primarily focusing on literary and historical studies, the essay interrogates crucial differences and commonalities between memory studies and early modern studies

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore