80 research outputs found

    Temporal variations in river water surface elevation and slope captured by AirSWOT

    Get PDF
    The Surface Water and Ocean Topography (SWOT) satellite mission aims to improve the frequency and accuracy of global observations of river water surface elevations (WSEs) and slopes. As part of the SWOT mission, an airborne analog, AirSWOT, provides spatially-distributed measurements of WSEs for river reaches tens to hundreds of kilometers in length. For the first time, we demonstrate the ability of AirSWOT to consistently measure temporal dynamics in river WSE and slope. We evaluate data from six AirSWOT flights conducted between June 7–22, 2015 along a ~90 km reach of the Tanana River, AK. To validate AirSWOT measurements, we compare AirSWOT WSEs and slopes against an in situ network of 12 pressure transducers (PTs). Assuming error-free in situ data, AirSWOT measurements of river WSEs have an overall root mean square difference (RMSD) of 11.8 cm when averaged over 1 km2 areas while measurements of river surface slope have an RMSD of 1.6 cm/km for reach lengths >5 km. AirSWOT is also capable of recording accurate river WSE changes between flight dates, with an RMSD of 9.8 cm. Regrettably, observed in situ slope changes that transpired between the six flights are well below AirSWOT's accuracy, limiting the evaluation of AirSWOT's ability to capture temporal changes in slope. In addition to validating the direct AirSWOT measurements, we compare discharge values calculated via Manning's equation using AirSWOT WSEs and slopes to discharge values calculated using PT WSEs and slopes. We define or calibrate the remaining discharge parameters using a combination of in situ and remotely sensed observations, and we hold these remaining parameters constant between the two types of calculations to evaluate the impact of using AirSWOT versus the PT observations of WSE and slope. Results indicate that AirSWOT-derived discharge estimates are similar to the PT-derived discharge estimates, with an RMSD of 13.8%. Additionally, 42% of the AirSWOT-based discharge estimates fall within the PT discharge estimates' uncertainty bounds. We conclude that AirSWOT can measure multitemporal variations in river WSE and spatial variations in slope with both high accuracy and spatial sampling, providing a compelling alternative to in situ measurements of regional-scale, spatiotemporal fluvial dynamics

    Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release

    Get PDF
    Concurrent ice sheet surface runoff and proglacial discharge monitoring are essential for understanding Greenland ice sheet meltwater release. We use an updated, well-constrained river discharge time series from the Watson River in southwest Greenland, with an accurate, observation-based ice sheet surface mass balance model of the  ∼  12 000 km<sup>2</sup> ice sheet area feeding the river. For the 2006–2015 decade, we find a large range of a factor of 3 in interannual variability in discharge. The amount of discharge is amplified  ∼  56 % by the ice sheet's hypsometry, i.e., area increase with elevation. A good match between river discharge and ice sheet surface meltwater production is found after introducing elevation-dependent transit delays that moderate diurnal variability in meltwater release by a factor of 10–20. The routing lag time increases with ice sheet elevation and attains values in excess of 1 week for the upper reaches of the runoff area at  ∼  1800 m above sea level. These multi-day routing delays ensure that the highest proglacial discharge levels and thus overbank flooding events are more likely to occur after multi-day melt episodes. Finally, for the Watson River ice sheet catchment, we find no evidence of meltwater storage in or release from the en- and subglacial environments in quantities exceeding our methodological uncertainty, based on the good match between ice sheet runoff and proglacial discharge

    Derivation of High Spatial Resolution Albedo from UAV Digital Imagery:Application over the Greenland Ice Sheet

    Get PDF
    Measurements of albedo are a prerequisite for modeling surface melt across the Earth's cryosphere, yet available satellite products are limited in spatial and/or temporal resolution. Here, we present a practical methodology to obtain centimeter resolution albedo products with accuracies of ?5% using consumer-grade digital camera and unmanned aerial vehicle (UAV) technologies. Our method comprises a workflow for processing, correcting and calibrating raw digital images using a white reference target, and upward and downward shortwave radiation measurements from broadband silicon pyranometers. We demonstrate the method with a set of UAV sorties over the western, K-sector of the Greenland Ice Sheet. The resulting albedo product, UAV10A1, covers 280 km2, at a resolution of 20 cm per pixel and has a root-mean-square difference of 3.7% compared to MOD10A1 and 4.9% compared to ground-based broadband pyranometer measurements. By continuously measuring downward solar irradiance, the technique overcomes previous limitations due to variable illumination conditions during and between surveys over glaciated terrain. The current miniaturization of multispectral sensors and incorporation of upward facing radiation sensors on UAV packages means that this technique could become increasingly common in field studies and used for a wide range of applications. These include the mapping of debris, dust, cryoconite and bioalbedo, and directly constraining surface energy balance models.publishersversionPeer reviewe

    AirSWOT measurements of river water surface elevation and slope:Tanana River, AK

    Get PDF
    Fluctuations in water surface elevation (WSE) along rivers have important implications for water resources, flood hazards, and biogeochemical cycling. However, current in situ and remote sensing methods exhibit key limitations in characterizing spatiotemporal hydraulics of many of the world's river systems. Here we analyze new measurements of river WSE and slope from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission aimed at addressing limitations in current remotely sensed observations of surface water. To evaluate its capabilities, we compare AirSWOT WSEs and slopes to in situ measurements along the Tanana River, Alaska. Root-mean-square error is 9.0cm for WSEs averaged over 1km(2) areas and 1.0cm/km for slopes along 10km reaches. Results indicate that AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics. AirSWOT's high-precision measurements are valuable for hydrologic analysis, flood modeling studies, and for validating future SWOT measurements

    Direct Measurements of Meltwater Runoff on the Greenland Ice Sheet Surface

    Get PDF
    Meltwater runoff from the Greenland Ice Sheet surface influences surface mass balance (SMB), ice dynamics and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-hour trial for a 63.1 square kilometer moulin-terminating internally drained catchment (IDC) on Greenland's mid-elevation (1207-1381 meters above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6.1 (Modele Atmospherique Regionale 3.6.1), RACMO2.3 (Regional Atmospheric Climate Model 2.3), MERRA-2 (Modern Era Retrospective-analysis for Research and Applications-2) and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins, but are improved using synthetic unit hydrograph theory (SUH). Retroactive SUH applications to two older field studies reproduces their findings, signifying that remotely sensed IDC area, shape, and river-length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6.1, RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment models overestimated runoff by plus 21 percent to plus 58 percent, linked to overestimated ablation and possible meltwater retention in bare, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of surface mass balance with ice dynamics and subglacial systems

    Direct measurements of meltwater runoff on the Greenland ice sheet surface

    Get PDF
    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland?s midelevation (1,207?1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systemspublishersversionPeer reviewe

    Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Harmful Algae 14 (2012): 271-300, doi:10.1016/j.hal.2011.10.025.Over the last decade, our understanding of the environmental controls on Pseudo-nitzschia blooms and domoic acid (DA) production has matured. Pseudo-nitzschia have been found along most of the world's coastlines, while the impacts of its toxin, DA, are most persistent and detrimental in upwelling systems. However, Pseudo-nitzschia and DA have recently been detected in the open ocean's high-nitrate, low-chlorophyll regions, in addition to fjords, gulfs and bays, showing their presence in diverse environments. The toxin has been measured in zooplankton, shellfish, crustaceans, echinoderms, worms, marine mammals and birds, as well as in sediments, demonstrating its stable transfer through the marine food web and abiotically to the benthos. The linkage of DA production to nitrogenous nutrient physiology, trace metal acquisition, and even salinity, suggests that the control of toxin production is complex and likely influenced by a suite of environmental factors that may be unique to a particular region. Advances in our knowledge of Pseudo-nitzschia sexual reproduction, also in field populations, illustrate its importance in bloom dynamics and toxicity. The combination of careful taxonomy and powerful new molecular methods now allow for the complete characterization of Pseudo-nitzschia populations and how they respond to environmental changes. Here we summarize research that represents our increased knowledge over the last decade of Pseudo-nitzschia and its production of DA, including changes in worldwide range, phylogeny, physiology, ecology, monitoring and public health impacts

    The noise-lovers: cultures of speech and sound in second-century Rome

    Full text link
    This chapter provides an examination of an ideal of the ‘deliberate speaker’, who aims to reflect time, thought, and study in his speech. In the Roman Empire, words became a vital tool for creating and defending in-groups, and orators and authors in both Latin and Greek alleged, by contrast, that their enemies produced babbling noise rather than articulate speech. In this chapter, the ideal of the deliberate speaker is explored through the works of two very different contemporaries: the African-born Roman orator Fronto and the Syrian Christian apologist Tatian. Despite moving in very different circles, Fronto and Tatian both express their identity and authority through an expertise in words, in strikingly similar ways. The chapter ends with a call for scholars of the Roman Empire to create categories of analysis that move across different cultural and linguistic groups. If we do not, we risk merely replicating the parochialism and insularity of our sources.Accepted manuscrip
    corecore