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Abstract 25 

The Surface Water and Ocean Topography (SWOT) satellite mission aims to improve the 26 

frequency and accuracy of global observations of river water surface elevations (WSEs) and 27 

slopes. As part of the SWOT mission, an airborne analog, AirSWOT, provides spatially-28 

distributed measurements of WSEs for river reaches tens to hundreds of kilometers in length. For 29 

the first time, we demonstrate the ability of AirSWOT to consistently measure temporal 30 

dynamics in river WSE and slope. We evaluate data from six AirSWOT flights conducted 31 

between June 7-22, 2015 along a ~90 km reach of the Tanana River, AK. To validate AirSWOT 32 

measurements, we compare AirSWOT WSEs and slopes against an in situ network of 12 33 

pressure transducers (PTs). Assuming error-free in situ data, AirSWOT measurements of river 34 

WSEs have an overall root mean square difference (RMSD) of 11.8 cm when averaged over 1 35 

km2 areas whilst measurements of river surface slope have an RMSD of 1.6 cm/km for reach 36 

lengths >5 km. AirSWOT is also capable of recording accurate river WSE changes between 37 

flight dates, with an RMSD of 9.8 cm. Regrettably, observed in situ slope changes that transpired 38 

between the six flights are well below AirSWOT’s accuracy, limiting the evaluation of 39 

AirSWOT’s ability to capture temporal changes in slope. In addition to validating the direct 40 

AirSWOT measurements, we compare discharge values calculated via Manning’s equation using 41 

AirSWOT WSEs and slopes to discharge values calculated using PT WSEs and slopes. We 42 

define or calibrate the remaining discharge parameters using a combination of in situ and 43 

remotely sensed observations, and we hold these remaining parameters constant between the two 44 

types of calculations to evaluate the impact of using AirSWOT versus the PT observations of 45 

WSE and slope. Results indicate that AirSWOT-derived discharge estimates are similar to the 46 

PT-derived discharge estimates, with an RMSD of 13.8%. Additionally, 42% of the AirSWOT-47 
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based discharge estimates fall within the PT discharge estimates’ uncertainty bounds. We 48 

conclude that AirSWOT can measure multitemporal variations in river WSE and spatial 49 

variations in slope with both high accuracy and spatial sampling, providing a compelling 50 

alternative to in situ measurements of regional-scale, spatiotemporal fluvial dynamics. 51 

1. Introduction 52 

The recent and rapid expansion of remote sensing technologies provides exciting 53 

opportunities to address global-scale questions of fluvial process, especially in areas where in 54 

situ observations are limited (Hannah et al., 2011; Pavelsky et al., 2014). Currently, the most 55 

robust method for space-based observation of river water surface elevation (WSE) and slope is 56 

satellite altimetry (Bates et al., 2014; Calmant et al., 2008; Tourian et al., 2016). A number of 57 

studies use available altimeters to measure WSEs with accuracies ranging from 10 cm (ICESat, 58 

SARAL/Altika) to several decimeters (TOPEX/Poseidon, Jason-2, Envisat) (Calmant et al., 59 

2008; O’Loughlin et al., 2016). These altimeter measurements have been used to validate flood 60 

models, create time series of water level changes, estimate discharge, and quantify river height 61 

and slope variability in inaccessible river basins (Domeneghetti, 2016; Garambois et al., 2016; 62 

Kouraev et al., 2004; Papa et al., 2010; Paris et al., 2016; Tourian et al., 2016). However, 63 

altimeter missions and their processing chains were primarily developed to measure sea surface 64 

dynamics.  As a result, altimeter observations of surface water bodies have complex error 65 

characteristics due to variable waveforms, river or lake WSE changes within the altimeter 66 

footprint, surrounding land elevations, and specular reflections (Alsdorf et al., 2007; Calmant et 67 

al., 2008). Additionally, altimeters have low temporal (10-35 days) and spatial (70-600 m) 68 

resolutions, along with large spatial gaps between orbital paths, which is not ideal for viewing 69 

surface water dynamics. These characteristics limit the hydraulic visibility, the potential to 70 
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capture hydrological responses and hydraulic variabilities within a river network using remote 71 

sensing, of the world’s largest river systems to altimetry (Alsdorf et al., 2007; Calmant et al., 72 

2008; Garambois et al., 2016; Maillard et al., 2015; Smith, 1997).   73 

The upcoming Surface Water and Ocean Topography (SWOT) mission plans to vastly 74 

increase global observations of rivers 100 m wide and larger by providing 3-D measurements of 75 

river WSEs from ~78°N to ~78°S (Biancamaria et al., 2016; Fjørtoft et al., 2014). SWOT’s goal 76 

is to measure river WSEs with an accuracy of 10 cm or better when averaged over 1 km2 areas 77 

and river surface slopes with an accuracy of 1.7 cm/km or better along 10 km reaches 78 

(Rodriguez, 2016). As part of the SWOT mission, NASA has developed AirSWOT, an airborne 79 

Ka-band interferometer that produces data products analogous to SWOT (Altenau et al., 2017b; 80 

Biancamaria et al., 2016; Fu et al., 2015). AirSWOT is designed to measure high-accuracy 81 

WSEs in a ~5 km wide swath that enables mapping of river reaches hundreds of kilometers in 82 

length within a reasonable timeframe. Whilst there are some differences between AirSWOT’s 83 

incidence angles and planned SWOT viewing geometry, AirSWOT provides comparable 84 

measurements to SWOT by recording elevations at the same radar wavelength (Ka-Band) and at 85 

narrower incidence angles (~4-25°) than existing sensors. More detailed summaries of the 86 

differences between AirSWOT and SWOT, along with AirSWOT’s capabilities, are presented by 87 

Moller et al. (2011) and Altenau et al. (2017b).   88 

Previous work has shown that for a single day, AirSWOT can capture detailed spatial 89 

variations in river WSEs and slopes with accuracies of 8-9 cm over 1 km2 areas and 1-1.5 cm/km 90 

over 10 km reaches. These results suggest that AirSWOT is capable of obtaining SWOT-like 91 

measurements within the mission error requirements and is useful for understanding river 92 

hydraulics at scales that will be unobservable by SWOT (Altenau et al., 2017b, Pitcher et al., 93 
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2018).  To date, however, AirSWOT has been tested against data from a single flight.  The 94 

ability of AirSWOT to accurately measure temporal variations in river WSEs and slopes remains 95 

unknown. AirSWOT continues to be an experimental instrument with processing algorithms 96 

under development. Furthermore, varying aircraft stability and roughness of the water surface 97 

affect radar returns and impact AirSWOT’s accuracy. Therefore, it is imperative to validate 98 

AirSWOT measurements across and between collection days, in addition to the previously 99 

published single-day results.   100 

 For the first time, we demonstrate the ability of AirSWOT to record river WSE and slope 101 

changes between six different AirSWOT collections acquired over a three-week period. 102 

Furthermore, we investigate the value of using AirSWOT measurements to estimate other 103 

hydraulic quantities by comparing discharge calculated using AirSWOT WSEs and slopes versus 104 

in situ WSEs and slopes, combined with other in situ and remotely sensed observations of depth 105 

and width, in Manning’s Equation.  106 

2. Study Site 107 

For this study, we conducted a six-week field campaign from May 15, 2015 to June 27, 108 

2015 along a ~90 km reach of the Tanana River, Alaska, USA (Fig. 1a). This site is ideal for 109 

assessment of AirSWOT’s capabilities to measure WSEs and slopes over a highly-dynamic, 110 

multichannel river offering challenges for AirSWOT beyond those of single-threaded, low relief 111 

rivers. The shape of the annual hydrograph on the Tanana is dominated by melt of snowpack and 112 

glaciers during the spring and summer. Mean annual discharge for the open-water season (May 113 

to October) at the Nenana gauge station from 1962 to 2015 is ~1299 m3/s. The mean daily 114 

discharge for the duration of the field campaign was 870 m3/s, which is very low for that time of 115 

year. For comparison, the mean daily discharge for June 2016 was 1113 m3/s. There are three 116 
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primary tributaries that flow into the main study reach: Salchaket Slough, Chena River, and 117 

Wood River. Based on the U.S. Geological stream gauges 15485500 Tanana River at Fairbanks, 118 

AK and 15515500 Tanana River at Nenana, AK, these tributaries likely account for about ~20% 119 

of the flow between the two gauge stations on average. The glacial origin of the Tanana River 120 

results in a high sediment load, which interacts with local topography to produce a complex 121 

morphology that ranges from highly braided to a single meandering channel (Brabets et al., 122 

2000). This varied river morphology, in combination with ubiquitous sandbars and high bluffs 123 

(20-50 m high), makes the Tanana a challenging test site for AirSWOT’s InSAR technology 124 

(Altenau et al., 2017b). 125 

3. Methods 126 

3.1 Field Measurements 127 

 To validate AirSWOT measurements of river WSE and slope, we installed a network of 128 

20 Solinst M5 Levelogger Edge pressure transducers (PTs) throughout the study reach to record 129 

high-resolution, in situ measurements of changes in river height as well as two Solinst 130 

Barologgers to compensate for atmospheric pressure fluctuations 131 

(https://www.solinst.com/products/data/3001.pdf). Eight of the 20 pressure transducers are not 132 

used in this study because they were buried by mobile sediment or riverbanks after installation as 133 

a result of fluvial geomorphological processes. This left us with 12 viable pressure transducers to 134 

calculate river height and slope changes (Fig. 1a). To deploy the PTs, we secured each device to 135 

a cinderblock that was attached to the end of a long metal cable tethered to a fixed-point on the 136 

bank of the river, usually a tree. We then placed the cinder block into the river about 5-10 m 137 

from the bank. The distance between PTs ranged from 0.29-23 km, with the majority of the PTs 138 

spaced 4-8 km apart. Data were recorded at 2 min intervals. Reported accuracy for the PTs is 139 
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±0.3 cm and ±0.05 kPa (0.5 cm) for the Barologgers, resulting in a combined instrument 140 

accuracy for water level measurements of ±0.8 cm 141 

(https://www.solinst.com/products/data/3001.pdf).  142 

To convert the water depth measurements from the PTs to river WSEs, we used an 143 

optical survey level to measure the height difference between the water surface and GPS 144 

benchmarks (metal rods) that we placed near the fixed-point on the bank at each PT location. We 145 

used the Canadian Spatial Reference System Precise Point Positioning tool (CSRS-PPP) 146 

provided by Natural Resources Canada for static post-processing of the GPS surveys, providing 147 

centimeter-level accuracies of the absolute WSEs collected at each PT site 148 

(http://www.nrcan.gc.ca/earth-sciences/geomatics/geodetic-reference-systems/). The accuracy of 149 

the GPS surveys ranges from ±3.6-6.3 cm, while our optical survey accuracy is ±0.2 cm, 150 

bringing the total uncertainty for the PTs to ±4.6-7.3 cm. It is also possible that the PTs 151 

experienced some shifting or sinking due to the high mobility of the Tanana River bed (Brabets 152 

et al., 2000). Any potential movements would add to the uncertainty in the PT WSEs. However, 153 

we did not have robust methods for measuring these effects, therefore they are not accounted for 154 

in our uncertainty calculations. A solid earth tide correction is accounted for in the AirSWOT 155 

processing methodology, but not in the GPS post-processing. As a result, we apply a solid earth 156 

tide correction to the PT WSE values using the program solid 157 

(http://geodesyworld.github.io/SOFTS/solid.htm#link0).  158 

 In addition to the PTs, we collected a high-resolution GPS profile along the main channel 159 

of the study reach on June 7, 2015 (Fig. 1a). We collected the profile using a Trimble R9 survey-160 

grade GPS system attached to the back of an 8.5 m river boat. GPS profile measurements were 161 

post-processed using the CSRS-PPP tool in kinematic processing mode and provide nearly 162 
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continuous observations of river heights with ~3 m spacing between points and an uncertainty of 163 

±2.0 cm in the vertical (Altenau et al., 2017b). Along with the river WSEs, we collected water 164 

depths at each GPS profile point using a single-beam SonarMite Echo Sounder v.3.0. Instrument 165 

accuracy for the echo sounder is ±2.5 cm (http://www.ohmex.com/sonarmite.html).  166 

3.2 AirSWOT Measurements  167 

After installation of the PTs, six AirSWOT datasets were collected on June 7, June 9, 168 

June 16, June 17, June 18, and June 22, 2015, to image temporal fluctuations in river WSE and 169 

slope. Each AirSWOT mission consists of 4-24 overlapping flight lines per day, resulting in a 170 

total of 66 individual lines of AirSWOT WSE measurements. The June 9th and June 16th 171 

collections contain 24 flight lines covering a 43 km reach along the upstream portion of the field 172 

site and a 32 km reach along the downstream portion of the field site, while the remaining flight 173 

days each contain 4-6 flight lines of data covering the entire 90 km study reach (Fig. 1b-g).  174 

The AirSWOT team at NASA’s Jet Propulsion Laboratory processes the AirSWOT data 175 

using custom software. Each AirSWOT flight line consists of 4 products, with the primary 176 

product being the AirSWOT elevations measured in meters above the WGS84 ellipsoid. Other 177 

products provided with the elevations are the relative radar backscatter (dB), incidence angle (°) 178 

and estimated elevation errors (m). Estimated elevation errors are calculated from the phase 179 

variance (Cramer-Rao bound) which is based on the correlation between the two interferometric 180 

images and depends on the sensor incidence angles, radar wavelength, and underlying surface 181 

type (high topography, vegetation type, soil moisture, etc.) (Altenau et al., 2017b; Rosen et al., 182 

2000). All AirSWOT products are in a raster format and have a pixel resolution of 3.6 m in a 183 

UTM 6N projection. 184 

3.3 2-D AirSWOT Filtering    185 

http://www.ohmex.com/sonarmite.html
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In this paper, we focus on the ability of AirSWOT to record changes in river WSEs and 186 

slopes. To do so, we filter the 2-D AirSWOT measurements before spatially averaging and 187 

comparing them to the PT surveys. Filtering the 2-D signal removes pixels containing WSE 188 

outliers that are often due to layover and improper estimation of the ambiguity height parameter. 189 

The ambiguity height is the amount of height change that leads to a 2π change in the 190 

interferometric phase and is a key parameter in unwrapping the interferometric phase to calculate 191 

elevation values (Rosen et al., 2000). When using near-nadir geometry, layover tends to occur in 192 

environments with moderate-to-high topography, and the ambiguity heights have a faster range 193 

variation (Neeck et al., 2012). As a result, calculating ambiguity heights can be more difficult, 194 

especially in the near-swath and in areas adjacent to higher topography. Incorrect ambiguity 195 

heights often lead to high vertical errors and geolocation errors in WSEs (Biancamaria et al., 196 

2016).  197 

The first step in the filtering process is isolating the river pixels in the AirSWOT data. 198 

For each AirSWOT line, we use a binary river mask created from a three-band color infrared 199 

(CIR) camera (http://cirrus-designs.com/) on board the AirSWOT platform to isolate the river 200 

pixels from surrounding land pixels. Regrettably, the majority of CIR images collected during 201 

the AirSWOT flights were cloudy, which prevents us from using automatic methods to create an 202 

independent river mask for each date. The CIR imagery were clear for the June 17th flight, 203 

however, so we use these data to create a river mask and filter out the land pixels in each 204 

AirSWOT line. We produce the river mask using a normalized difference water index (NDWI) 205 

transformation with a threshold of 0.3 to identify water pixels (McFeeters, 1996). All pixels 206 

greater than the threshold are assigned a value of one for water, and any pixels less than the 207 

threshold are assigned a value of zero. Due to the high turbidity of the Tanana River, some 208 
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uncertainty in the water mask is introduced based on the chosen water threshold. As a result, 209 

water pixels with high suspended sediment concentrations could be classified as land, or 210 

conversely, land pixels that have NDWI values close to the chosen water threshold could be 211 

classified as water. These misclassified pixels in the water mask could increase the noise in the 212 

identified AirSWOT WSE pixels. Additionally, the river on June 17th was at a lower stage than 213 

the majority of the data collections with the exception of June 16th, which had a stage about 5 cm 214 

lower than June 17th. Therefore, the river extent observed in the river mask should be comparable 215 

to June 16th, but is likely to exclude some inundated pixels on the other collection days.  216 

Once the river WSEs are isolated, we use a 2 km2 moving window to remove extreme 217 

outliers by erasing pixels ±3 standard deviations away from the mean river WSE in the window 218 

(Altenau et al., 2017b). This filter helps eliminate pixels affected by layover from adjacent high 219 

topography and vegetation, as well as misclassified water/land pixels from the water mask. 220 

Despite the initial outlier filter, there are some large areas affected by ambiguity height errors 221 

that are not removed during the filtering process because they significantly affect the statistics 222 

within the 2 km2 window. Therefore, we manually remove the incorrect pixels in these areas 223 

(Fig. 2). These larger areas of ambiguity height errors are prominent in 9 of the 66 AirSWOT 224 

lines. Fig. 3a shows the effects of the 2-D filtering process on the distribution of WSEs for all the 225 

AirSWOT flights. Overall, ~95% of the pixels are retained during the initial 2-D filtering.  226 

3.4 WSE Validation 227 

 After filtering the 2-D AirSWOT measurements, we spatially average the WSEs and 228 

slopes before comparing AirSWOT to the PT observations. Spatial averaging is commonly 229 

applied to interferometric measurements in order to reduce random errors that are independent 230 

from pixel to pixel (Rodriguez and Martin, 1992). The SWOT mission accuracy requirement for 231 
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river WSEs of 10 cm is based on averaging pixels within 1 km2 areas, a threshold the SWOT 232 

Science Team has determined will allow significant scientific advances in fluvial hydrology 233 

(Rodriguez, 2016). Therefore, we use this area requirement as a baseline for assessing 234 

AirSWOT’s capabilities for capturing same-day river WSEs as well as their changes over time 235 

(Altenau et al., 2017b). To quantify WSE differences between AirSWOT and the in situ 236 

measurements for each flight date, we calculate a weighted average of the filtered AirSWOT 237 

WSEs within 1 km2 areas around each PT using the following equation: 238 

 239 

𝑥̅𝑥 =
∑ 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 
(1) 

where 𝑥̅𝑥 is the weighted average of the AirSWOT WSEs at a single PT location, 𝑥𝑥𝑖𝑖 is the 240 

AirSWOT WSE for each pixel (i), and 𝑤𝑤𝑖𝑖 is the weight associated with each pixel and is 241 

determined by AirSWOT’s estimated elevation error (ei, see Section 3.2): 242 

𝑤𝑤𝑖𝑖 =
1
𝑒𝑒𝑖𝑖2

 (2) 

As a result, pixels with lower estimated errors have more influence in the final weighted average 243 

than the pixels with larger estimated errors.  244 

 Despite the initial 2-D filtering of the AirSWOT WSEs, some remaining erroneous pixels 245 

affected by ambiguity height errors are still present in the data. These pixels tend to have large 246 

vertical offsets compared to field observations but low 𝑒𝑒𝑖𝑖 values, resulting in comparatively high 247 

errors in the weighted average calculation. To reduce the effects of these pixels, we calculate the 248 

median for each 1 km2 area and retain 70% of the AirSWOT WSEs that surround the median 249 

value. We also eliminate pixels that have estimated errors of < 0.1 m because we find these 250 

particularly low error estimates often correspond with pixels that are affected by ambiguity 251 
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height errors. Pixels with estimated errors < 0.1 m make up less than 1% of the data, therefore 252 

this second filter preserves about 70% of the data within each 1 km2 area while reducing the 253 

errors in the weighted average that are caused by the incorrect pixels. The spatial filtering within 254 

the 1 km2 areas and application of the weighted mean reduces the mean average difference 255 

(MAD) between AirSWOT and PT WSEs by 68% compared to calculating a simple mean on the 256 

unfiltered data (Fig. 3b).   257 

It is difficult to calculate uncertainties for the averaged WSEs using the AirSWOT data 258 

alone. We can calculate the random error component of the uncertainty for the averaged 259 

AirSWOT WSEs based on the weights (𝑤𝑤𝑖𝑖): 260 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =
√𝐹𝐹

�∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

  
(3) 

where F is a factor that accounts for the oversampling of pixels within the gridded UTM product 261 

relative to the sampling assumed when estimating the elevation errors. F depends on the 262 

incidence angle (I):  263 

𝐹𝐹 =
0.52

sin(𝐼𝐼)
 

(4) 

The constant 0.52 comes from the ratio (1.87 m)/(3.6 m) where 1.87 m is the effective spatial 264 

resolution for 80 MHz bandwidth and 3.6 m is the UTM posting.  Equation 3 accounts for the 265 

random error component (noise on the interferometric phase) in the AirSWOT measurement 266 

uncertainty, but does not include systematic errors that are due to variations in antenna pointing 267 

and incomplete knowledge of the airborne platform location such as attitude errors, baseline 268 

errors, and position errors (Rodriguez and Martin, 1992; Rosen et al., 2000). As a result, the 269 

uncertainties calculated using equation 3, which range from 0.1 – 2.0 cm, only account for a 270 
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small fraction of the total error and are unrealistically low. Systematic errors in the AirSWOT 271 

data affect the accuracy of the WSEs, and likely add to the random error uncertainty, but cannot 272 

be quantified from the data itself or from available ancillary information. Rather than present 273 

misleading uncertainty values, we elect to not designate uncertainties for the averaged AirSWOT 274 

WSEs, and focus instead on reporting observed differences between the AirSWOT and PT 275 

measurements, as this comparison provides an empirical estimate of the total error. 276 

Once the averaged AirSWOT WSEs are determined, we calculate the same-day, absolute 277 

differences and associated root-mean-square differences (RMSDs) between the AirSWOT and 278 

PT WSEs. Although Altenau et al. (2017b) report no bias in the June 9th AirSWOT 279 

measurements along the Tanana River, we observe a spatially consistent negative bias across the 280 

AirSWOT WSEs that ranges from -8 cm to -20 cm depending on the collection day. The 281 

AirSWOT data presented in this paper are processed using different methods from the data 282 

presented in Altenau et al. (2017b), and we have not determined the source of the bias in the 283 

current data at this time. Possible explanations for the bias include improper common range 284 

calibrations, differences in how solid earth tide corrections are incorporated, erroneous GPS 285 

solutions, and problems with the troposphere correction. As a result, we subtract the mean bias 286 

on each day from the AirSWOT WSEs and recalculate the absolute differences and RMSDs 287 

between the same-day, bias-corrected AirSWOT measurements and PT WSEs (Table 1).  288 

In addition to the same-day WSEs, we calculate WSE change values for the PTs and bias-289 

corrected AirSWOT measurements between the first AirSWOT date (June 7th) and all 290 

subsequent dates (n = 58), as well as WSE changes between all possible AirSWOT date 291 

combinations (n = 161). We estimate uncertainties for the PT WSE changes by taking the root 292 

sum of squares of the uncertainties in the daily PT WSEs. Finally, we calculate the absolute 293 
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differences and RMSDs between the bias-corrected AirSWOT and PT WSE change 294 

observations.  295 

3.5 Slope Validation 296 

Using different combinations of the 12 PT locations, we identify a total of 63 pairs of PT 297 

sites (e.g. PT01 and PT05) for calculating along-flow river surface slopes with reach lengths 298 

between PT points ranging from 5.1 to 83.6 km. At reach lengths <5 km AirSWOT slopes 299 

become severely affected by high-variability noise likely resulting from layover and ambiguity 300 

height errors. Therefore, PT combinations with reach lengths <5 km are not included here. For 301 

each PT pair, we calculate the PT surface slopes by dividing the difference in WSE by the reach 302 

length between the PT sites.  303 

To compare the PT slopes to AirSWOT slopes, we first create 1-D, high-resolution 304 

AirSWOT profiles by extracting the 2-D AirSWOT WSE measurements coincident to the GPS 305 

profile locations collected in the field (Fig. 1a).  At each GPS profile point, we calculate a 1 km 306 

orthogonal vector across the Tanana River and use equation 3.1 to calculate a weighted mean of 307 

the 2-D AirSWOT WSEs along the orthogonal vector. After the weighted averaging, we create 308 

the final 1-D AirSWOT profiles by applying a running median filter with a window of 500 pixels 309 

(~1600 m) to eliminate large peaks in the initial profiles (Fig. 4). The running median filter 310 

reduces high frequency variability, which is unrealistic for a large river like the Tanana. We 311 

validate the running median filter by comparing the initial profile and filtered profile on June 7th 312 

to the GPS profile WSEs that were also collected on June 7th. When compared to the GPS 313 

profile, applying the running median filter reduces the final AirSWOT profile RMSD to 18.6 cm 314 

versus 69.3 cm for the initial AirSWOT profile (Fig. 5). While a window size of 500 pixels 315 

works well for the Tanana River profile, optimal window size will likely vary among river 316 
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environments depending on topography, morphology, size, and other factors. Currently, 317 

knowledge about the field site, or in situ observations, are required to determine the optimal 318 

window size for smoothing. However, future measurements from the SWOT satellite mission 319 

will provide river WSE profiles with higher accuracies than existing digital elevation models 320 

(Langhorst et al., unpublished results), which will aid in applying this methodology to ungauged 321 

or hard to access rivers.  322 

Once the 1-D WSE profiles are created, we use ordinary least squares linear regressions 323 

to calculate same-day slopes along the AirSWOT profiles between each of the 63 PT pair 324 

locations. We estimate AirSWOT slope uncertainties using the linear regressions, and the PT 325 

slope uncertainties by calculating the difference between the maximum and minimum slopes for 326 

each PT pair, which are based on the PT WSE uncertainties. To validate AirSWOT slope 327 

measurements, we calculate absolute differences and RMSDs between the same-day AirSWOT 328 

and PT slopes (Table 1). Due to equipment constraints, we do not have high-resolution GPS 329 

profiles along the study reach for each separate AirSWOT flight and are limited to validating 330 

temporal fluctuations in AirSWOT slopes against the PT observations. Therefore, we use linear 331 

regressions to calculate AirSWOT slopes over more sophisticated methods, such as LOESS 332 

filters, because we cannot validate spatial variations in AirSWOT slopes against the PT 333 

measurements. Altenau et al. (2017b) present results regarding AirSWOT’s ability to capture 334 

detailed spatial variations in WSE and slope along the same study reach of the Tanana River.   335 

Next, we calculate the slope changes between the first AirSWOT date (June 7th) and all 336 

subsequent dates (n = 297), as well as all possible AirSWOT date combinations (n = 766). To 337 

estimate uncertainties for the slope changes, we take the root sum of squares of the uncertainties 338 

in the same-day PT and AirSWOT slopes. We then calculate absolute differences for the 339 
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AirSWOT and PT slope changes between June 7th and all subsequent dates, and slope changes 340 

between all possible date combinations. 341 

3.6 Discharge Estimation 342 

In addition to validating AirSWOT’s ability to capture temporal fluctuations in river 343 

WSE and slope, we assess how AirSWOT observations compare to PT observations of WSE and 344 

slope when calculating discharge at each PT location using Manning’s equation (Manning et al., 345 

1890):  346 

𝑄𝑄 =  
1
𝑛𝑛
𝐴𝐴𝑅𝑅2/3√𝑆𝑆 (5) 

where 𝑄𝑄 is the discharge, 𝐴𝐴 is the cross sectional area, 𝑅𝑅 is the hydraulic radius, 𝑆𝑆 is the river 347 

surface slope, and 𝑛𝑛 is Manning’s roughness coefficient. 348 

First, we estimate the cross sectional area at each PT location. To derive depths, we use 349 

the bathymetric measurements collected with the echo sounder (see Section 3.1) to identify the 350 

average river bed elevation, or lowest point in a cross section, at each PT location. The bed 351 

elevation measurements were collected independently of the PT measurements and stay constant 352 

in time at each PT site. We derive the temporally-varying depth values used to calculate the cross 353 

sectional area at each PT site by subtracting the static bed elevations from the temporally varying 354 

PT and AirSWOT WSEs (Altenau et al., 2017a).  355 

For cross sectional widths, we use the CIR imagery collected during each AirSWOT 356 

flight to manually measure the river widths at the various PT sites on each day, since the clouds 357 

in the imagery inhibit us from using automatic width detection methods. Two PTs lack width 358 

measurements for several days due to dense cloud cover (PT07) and fewer AirSWOT 359 

observations (PT10). Therefore, we exclude these PTs in the discharge estimation, leaving us ten 360 

PT locations to calculate discharge. To test the effect of channel geometry on the calculated 361 
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discharge values, we perform a sensitivity analysis for 4 different cross sectional shapes 362 

(rectangle, parabola, triangle, and trapezoid). For the trapezoidal cross section, we assume the 363 

base width is half the top width. We find a negligible (0.2%) effect on mean discharge 364 

differences between cross sectional shapes, therefore, we use a simple rectangular geometry to 365 

calculate cross sectional area by multiplying the river width by depth.  366 

Next, we estimate the river surface slope at each cross section by locating the closest 367 

upstream and downstream PTs to the current PT location and calculating the slope between the 368 

two bounding sites.  The two exceptions are the first and last PT locations #1 (PT01) and #12 369 

(PT12) for which we use the closest downstream and upstream location only to calculate the 370 

slopes. For example, we determine the slope for PT05 by calculating the slope between PT04 371 

and PT06, and we determine PT01’s slope by calculating the slope between PT01 and PT02.  372 

Finally, we calibrate temporally-varying roughness coefficients at each PT site by 373 

calculating PT discharge estimates over a range of roughness values (0.01-0.1) and comparing 374 

the estimates to in situ discharge values from the Nenana gauge station at the downstream end of 375 

the study reach (Fig. 1a, Table 2). We assess how well AirSWOT measurements compare to the 376 

PT measurements of WSE and slope when estimating discharge by calculating daily and overall 377 

RMSD values between the PT and AirSWOT discharge values. The goal in this analysis is to 378 

compare discharge values calculated using AirSWOT measurements of WSE and slope to 379 

discharge values calculated using the  PT measurements of WSE and slope, holding all other 380 

variables constant, not to invert discharge values using mass conserved flow law inversion 381 

methods like those discussed by Durand et al. (2016). Because we calibrate Manning’s n to the 382 

gauge station discharge, the discharge values we calculate are not independent of the gauge, and 383 

we do not attempt to compare the discharge estimates to the gauge observations or analyze the 384 
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effects of tributary inputs at the different PT locations. We do, however, display the Nenana 385 

gauge discharge values for reference. 386 

4. Results  387 

Spatial patterns and biases in the differences between the same-day AirSWOT and PT 388 

WSEs are similar across all days, which indicates the separate AirSWOT flights are affected by 389 

comparable error sources (Fig. 6a,c; Table 1). RMSDs for the same-day, bias-corrected 390 

AirSWOT WSEs range from 8.3 cm to 15.0 cm with an overall RMSD of 11.8 cm. The 391 

consistency in the same-day AirSWOT WSE differences and biases allows AirSWOT to capture 392 

the same general pattern in temporal WSE changes as the PTs, with an RMSD of 9.8 cm for all 393 

possible date combinations (Fig. 7). Had the same-day WSE differences shown variable patterns 394 

and bias directions for each AirSWOT flight, high-accuracy WSE changes would be less 395 

detectable. Between the different PT locations, AirSWOT WSE change differences shift from 396 

underestimations upstream to overestimations downstream (Fig. 7c). The variations in WSE 397 

change differences between the PT sites are likely due to the different environmental conditions 398 

at each location and how they affect the radar returns. High topography, water surface roughness, 399 

width and number of channels in a cross section, and bare versus vegetated banks all influence 400 

the strength and quality of the radar returns at a specific PT location. For example, PT10 displays 401 

a comparatively large range in WSE change differences (Fig. 7c). PT10 is directly adjacent to an 402 

area of high topography, making it susceptible to layover errors, and is not covered by the high 403 

observational density June 9th and June 16th AirSWOT collections, leaving only data collections 404 

with fewer observations in the calculation of WSE changes.  405 

 In addition to the WSEs, AirSWOT is able to measure river surface slopes with an 406 

RMSD of 1.6 cm/km, and 98% of slope differences fall below 3.0 cm/km for reach lengths ≥5 407 
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km (Table 1, Fig. 6d). Same-day slope differences increase as reach length decreases.  408 

Unfortunately, the Tanana River slopes do not significantly change between the six AirSWOT 409 

collection days, though slight increases in slope, within the margin of error, are observed by the 410 

PTs as stage decreases (Fig. 8a). Mean slope changes observed by the PTs from June 7th to all 411 

subsequent dates ranged from 0.07 cm/km to 0.17 cm/km. These observed slope changes are 412 

well below AirSWOT’s slope accuracy, but variations in mean AirSWOT slope change are 413 

similarly low, ranging from -0.35 cm/km to 0.26 cm/km (Fig. 8a). Additionally, AirSWOT 414 

displays lower slope uncertainties than the PTs due to the high spatial density of the AirSWOT 415 

measurements with slope uncertainties decreasing exponentially as reach length increases (Fig. 416 

8b).  417 

Both PT and AirSWOT discharge estimates capture the general hydrograph pattern 418 

observed by the Nenana gauge station, with discharge decreasing until June 16th and increasing 419 

thereafter (Fig. 9). AirSWOT discharge values display a 13.8% difference compared to the PT 420 

values, on average, with RMSDs ranging from 11.1% to 18.0% (Table 3). 42% of the AirSWOT 421 

discharge estimates fall within the PT discharge uncertainty bounds. Discharge differences are 422 

predominately related to the AirSWOT WSE differences. A linear regression between discharge 423 

differences and WSE differences (R2=0.88) shows a 1.1% increase in discharge difference with 424 

every centimeter of WSE difference (Fig. 10a). Conversely, there is no statistically significant 425 

relationship between AirSWOT slope differences and discharge differences, with an R2=0.03 426 

(Fig. 10b).  427 

5. Discussion and Conclusion 428 

 In this study, we present a first analysis of AirSWOT’s ability to observe temporal 429 

variations in river WSE and slope over variable reach lengths and timescales. Altenau et al. 430 
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(2017b) and Pitcher et al. (2018) document AirSWOT’s ability to record accurate river WSEs 431 

and slopes for one collection date, while here we analyze the consistency of AirSWOT 432 

measurements over the course of three weeks and six different flights.  It is not always 433 

straightforward for AirSWOT to measure same-day river WSEs due to errors and biases likely 434 

related to the movement of the aircraft, variations in water surface roughness, and difficulties in 435 

phase unwrapping at narrower incidence angles (<5°) (Biancamaria et al., 2016, Neeck et al., 436 

2012). Comparisons with PT observations illustrate that AirSWOT accurately captures temporal 437 

water surface fluctuations along a complex, anabranching river system, with an RMSD of 11.8 438 

cm for same-day WSEs (Fig, 6c., Table 2). Given the differences between the PT and AirSWOT 439 

same-day WSEs display consistent patterns between flight collections, AirSWOT is also able to 440 

capture decimeter-level WSE changes, with an RMSD of 9.8 cm for all possible date 441 

combinations (Fig. 7c). Some of the differences between the AirSWOT and the PT WSEs could 442 

be due to the spatial averaging of the AirSWOT data or the PT uncertainty (±4.6-7.3 cm), which 443 

is a result of the instrument and GPS survey errors. PTs provide WSE measurements at a specific 444 

location in the cross section. Due to superelevation, the PTs could record different WSE values 445 

depending on whether they were placed on the inside or outside of a meander bend. These cross-446 

sectional effects on WSE would be observable by PTs if they were placed appropriately in the 447 

channel, but they are below the accuracy of the 2-D AirSWOT signal. Averaging over 1 km2 448 

areas, which is required to achieve decimeter-level accuracies in the AirSWOT WSEs, also 449 

results in averaging out any superelevation signal.     450 

 In contrast to river WSEs, AirSWOT is capable of producing robust river surface slope 451 

measurements with an RMSD of 1.6 cm/km for same-day slopes for reach lengths ≥5 km (Table 452 

2). While the slope changes observed along the Tanana River are significantly smaller than 453 
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AirSWOT’s daily slope accuracy, it is important to note that AirSWOT does detect extremely 454 

low temporal variability in slopes similar to the PT measurements (Fig. 8a). This low slope 455 

variability over time is somewhat surprising considering the dip in the hydrograph that occurs 456 

during the measurement period (Fig. 1a). We suggest several possible explanations for the low 457 

temporal variability in slopes along the Tanana River: (1) The rate of discharge change is 458 

actually quite low (±30 m3/s/day) compared to the rates of change associated with snowmelt and 459 

rainfall hydrographs moving through this reach of the Tanana. As a result, the ‘wave’ generated 460 

by this discharge change has relatively low amplitude and varies more gradually than is typical 461 

for this system. (2) Surface water slopes along this river reach may have strong ‘base level 462 

control’ by width constrictions due to the adjacent high bluffs and geologic setting. (3) There is 463 

some evidence that temporal variability in water slope is low for other anabranching river 464 

systems. For example, O’Loughlin et al. (2013) found only ~0.15 cm/km of slope change 465 

between the falling and rising limbs of the hydrograph along the middle reach of the Congo 466 

River. Additional research is needed during more extreme hydrologic events, or along rivers with 467 

larger slope variability over time, in order to draw definitive conclusions regarding AirSWOT’s 468 

accuracy in observing temporal slope changes. 469 

In addition to validating AirSWOT’s direct measurements of river WSE and slope, we 470 

test the effectiveness of the AirSWOT observations for approximating discharge compared to the 471 

PT observations. To do so, we use Manning’s equation to calculate and compare discharge 472 

values using both the PT and AirSWOT measurements of river WSE and slope. We hold the 473 

other discharge parameters constant between the PT and AirSWOT calculations, and derive them 474 

from additional in situ (depth, Manning’s n) and remotely sensed observations (width). 475 

Discharge estimates calculated using AirSWOT measurements of WSE and slope result in 476 
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marginal differences compared to discharge estimates calculated using the PT observations of 477 

WSE and slope. On average, AirSWOT discharge estimates are within 13.8% of the estimates 478 

attained using the PTs, and 42% of the time AirSWOT discharge measurements fall within the 479 

PT discharge uncertainty (Table 3). For the Tanana River, AirSWOT WSE differences dominate 480 

the observed discharge differences, with slope differences showing little effect (Fig. 10). This 481 

result is likely due, in part, to the limited slope variations occurring throughout the Tanana River 482 

during the field campaign. Because development of AirSWOT processing methods is ongoing, 483 

AirSWOT WSE errors and biases are likely to decrease in the future, along with a corresponding 484 

decrease in discharge errors. When combined with sophisticated algorithms and appropriate 485 

parameters, AirSWOT measurements can be used to invert discharge fluctuations along 486 

inaccessible and unmonitored river networks (Bjerklie et al., 2005; Bonnema et al., 2016; 487 

Durand et al., 2016; Hagemann et al., 2017), potentially including rivers that are too small to 488 

observe using satellite sensors yet have important biogeochemical and ecological impacts (Allen 489 

and Pavelsky, 2018; King et al., 2018). 490 

 Despite the challenges inherent in making precise measurements of WSEs when using an 491 

airborne radar, AirSWOT provides a compelling alternative to current remote sensing and in situ 492 

observations for measuring river dynamics. AirSWOT’s slope measurements are particularly 493 

notable due to their high accuracy and spatial density. In situ river gauging stations, or pressure 494 

transducers, provide accurate WSE measurements at one location, but are not ideal for estimating 495 

slope variability along river reaches due to their coarse spatial coverage. For example, gauge 496 

stations are typically spaced tens to hundreds of kilometers apart and have limited placement 497 

options due to equipment functionality and accessibility constraints (Allen and Pavelsky, 2015; 498 

Bates, 2004; Hannah et al., 2011). In addition to in situ methods, studies using nadir altimeter 499 
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data to estimate river slopes contend with poor spatial resolutions, wide track spacings between 500 

observations, and significant height uncertainties (Garambois et al., 2016; O’Loughlin et al., 501 

2013, 2016). In contrast, AirSWOT can provide spatially distributed measurements of WSE 502 

along hundreds of kilometers of river, which can capture detailed spatial variabilities in river 503 

WSEs and provide better-constrained slope estimates compared to in situ sensors and satellite 504 

altimeters (Altenau et al., 2017b). 505 

In addition to spaceborne observations, alternative airborne sensors insufficiently 506 

measure river WSEs and slopes. Specifically, airborne LiDAR systems, which are known for 507 

their high-accuracy measurements of land surfaces, tend to provide poorer returns over open 508 

water surfaces due to the absorption of the laser beam within the water column, low signal-to-509 

noise ratios, and high occurrences of specular reflection (Antonarakis et al., 2008; Sanders, 2007; 510 

Schumann et al., 2008; Smith et al., 2009).  As a result, most studies that utilize LiDAR 511 

measurements over inland waters focus on classifying water body areas not WSE or slope 512 

(Antonarakis et al., 2008; Crasto et al., 2015; Höfle, 2009). Recently, Branch et al. (2018) and 513 

Hudson et al. (2017) used airborne LiDAR transects to map river WSEs and slopes along the 514 

Columbia River Estuary. They found spatially-averaged LiDAR WSEs agreed with a local tide 515 

gauge to within an RMSE of ~40 cm, but had difficulty deriving precise slope estimates from the 516 

LiDAR data due to under sampling and sampling error. These results suggest AirSWOT provides 517 

superior measurements of river WSEs and slope compared to alternative LiDAR systems.  518 

Though AirSWOT data is not available globally, it presents an opportunity to study 519 

regional hydraulics and hydrology in novel ways (Altenau et al., 2017b; Pitcher et al., 2018). 520 

Current and future projects combine AirSWOT observations with other spaceborne and airborne 521 

sensors including LiDAR, multispectral, and hyperspectral imagers to study interactions between 522 
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surface water dynamics, geochemical fluxes, and geomorphic processes. The Arctic-Boreal 523 

Vulnerability Experiment (AboVE) (https://above.nasa.gov/about.html), ongoing, combines in 524 

situ observations including WSE, methane, and CO2 with remotely sensed data products of WSE 525 

(AirSWOT), soil moisture, and water quality to better understand the fast changing ecosystem 526 

dynamics in arctic and boreal regions. Additionally, the recently funded Delta-X project plans to 527 

combine in situ data, model outputs, and remote sensing observations from a variety of airborne 528 

sensors, including AirSWOT, to improve current understanding of water partitioning and 529 

sedimentation dynamics in the Mississippi River Delta. Furthermore, measurements of river 530 

WSEs and slopes from AirSWOT can be used for calibration, validation, and assimilation into 531 

local and regional-scale flood models to improve their performance by providing similar, and 532 

often superior, accuracies and better spatiotemporal coverage than existing airborne and satellite 533 

sensors. Finally, results from this study and others indicate AirSWOT accuracies consistently 534 

meet the SWOT mission accuracy requirements for river processes (Altenau et al., 2017b, 535 

Pitcher et al., 2018), which suggests AirSWOT could be a valuable tool for validating future 536 

SWOT measurements of river WSE and slope in complex and hard to reach river basins with 537 

little in situ data.   538 
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TABLES: 739 
 740 
Table 1: Root-mean-square differences (RMSDs) and bias between the AirSWOT and pressure 741 
transducer same-day water surface elevations (WSEs) and along-flow slopes. 742 

Date WSE RMSD 
(cm) 

Mean WSE 
Bias (cm) 

WSE RMSD,    
Bias removed (cm) 

Slope RMSD 
(cm/km) 

June 7 18.2 -14.6 10.8 1.4 
June 9 17.2 -8.1 15.0 1.8 
June 16 24.2 -20.7 11.1 1.8 
June 17 12.5 -9.3 8.3 1.6 
June 18 19.3 -15.4 11.6 1.7 
June 22 19.2 -13.3 12.7 1.2 
All Days 18.8 -13.6 11.8 1.6 

 743 
 744 

Table 2: Manning’s equation parameters for each pressure transducer cross section. 745 

Pressure 
Transducer Width Range (m) Number of Channels in 

Cross Section 
Manning’s n 

Range 
1 468-654 5 0.065-0.095 
2 413-458 4 0.055-0.080 
3 321-326 1 0.045-0.055 
4 468-616 6 0.055-0.085 
5 462-619 6 0.045-0.080 
6 354-458 4 0.045-0.070 
8 267-305 2 0.035-0.055 
9 209-258 2 0.025-0.035 
11 297-382 2 0.035-0.065 
12 259-279 1 0.035-0.045 

 746 
 747 

Table 3: Root-mean-square differences (RMSDs) between AirSWOT and pressure transducer 748 
discharge estimates.  749 

Date RMSD (m3/s) RMSD (%) 
June 7 105.8 11.1 
June 9 148.1 18.0 
June 16 107.9 15.6 
June 17 85.4 11.9 
June 18 98.6 12.6 
June 22 117.9 12.6 
All Days 112.3 13.8 

 750 
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FIGURES: 751 
 752 

 753 

Fig. 1: a) Tanana River study reach depicted with a Landsat 8 near-infrared image acquired on 754 
June 15, 2015. Pressure transducer (PT) locations are indicated by the different colored circles 755 
and GPS profile measurements are indicated by the light blue line. Upper left inset displays the 756 
study reach location within the state of Alaska. Lower right inset displays the Nenana gauge 757 
hydrograph during the open water season for the 2015 water year (WY). The grey shaded area 758 
within the hydrograph shows the timeframe of the field campaign. b-g) AirSWOT extent and 759 
elevation mosaics for the six different flights.   760 
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 762 

Fig. 2: Examples of ambiguity height errors in two AirSWOT lines from June 9, 2015 and June 763 
16, 2015. The areas of dark blue pixels, which designate significant vertical drops and 764 
geolocation errors, are manually removed.  765 
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 785 
Fig 3: (a) Histograms of the AirSWOT WSE pixels from all six flight collections before (red) 786 
and after (blue) the 2-D spatial filtering. (b) Density plots of the absolute differences between the 787 
spatially-averaged AirSWOT and PT WSEs with (blue) and without (red) the 2-D filtering and 788 
weighted mean calculation. Mean absolute difference (MAD) values for each method are shown.   789 
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 806 

Fig. 4: AirSWOT river water surface elevation (WSE) profiles. The initial 1-D AirSWOT 807 
profiles (red) are produced by calculating a weighted mean of the 2-D AirSWOT pixels. Severe 808 
peaks in the initial 1-D profiles are removed using a running median filter with a window size of 809 
500 observations (~1600 m) to yield the final profiles (black). The final profiles are used to 810 
calculate river surface slopes and slope changes. Standard deviations (Stdev) for the 2-D 811 
AirSWOT pixels measured across the orthogonal at each GPS profile observation are shown in 812 
grey.  813 
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 821 
Fig. 5: AirSWOT water surface elevation (WSE) profile versus GPS profile on June 7, 2015. 822 
Standard deviations of the 2-D AirSWOT pixels across the orthogonal at each GPS profile 823 
observation are shown in grey. The final 1-D AirSWOT profiles (black) are created using a 824 
running-median filter with a window size of 500 observations (~1600 m) along the initial 825 
profiles (red). Root mean square differences (RMSD) between the two AirSWOT profiles and 826 
GPS profile (blue) are displayed.  827 
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 848 

Fig. 6: AirSWOT vs. pressure transducer (PT) WSEs (a) and slopes (b). Dashed diagonal lines 849 
indicate the 1:1 lines. AirSWOT WSE (c) and slope (d) differences compared to the PTs for the 850 
various AirSWOT collections. AirSWOT WSEs and WSE differences are shown with the daily 851 
mean biases removed. Dashed horizontal lines indicate zero height and slope differences. 852 
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 854 

Fig. 7: Pressure transducer (PT) (a) and AirSWOT (b) WSE changes between June 7th and all 855 
subsequent dates (n = 58). c) AirSWOT WSE change differences at each PT location for all 856 
possible date combinations (n = 161). All AirSWOT WSE changes are calculated with the bias-857 
corrected WSEs. Different colors represent the various PT locations. PT uncertainty bars are too 858 
small to visualize.  859 
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 861 

Fig. 8: a) Boxplots of observed slope changes by the pressure transducers (PT, grey) and 862 
AirSWOT (white) between June 7th and all subsequent dates (n = 297), as well as all possible 863 
date combinations (All) (n = 766). Outliers make up 15% of the data points and are not shown in 864 
the boxplots of slope change distributions. The red horizontal line designates zero slope change, 865 
while the black vertical dashed line separates the consecutive slope change distributions from the 866 
distributions for all possible date combinations. b) AirSWOT (grey) and PT (black) slope change 867 
uncertainties versus reach length.  868 
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 880 

Fig. 9: Tanana River discharge estimates calculated using Manning’s equation. Solid colored 881 
lines display discharge estimates using the PT WSEs and slopes, while dashed colored lines 882 
display discharge estimates using AirSWOT WSEs and slopes. Shaded colored areas indicate the 883 
PT discharge uncertainties. Nenana gauge discharge is shown as the black solid line in each 884 
panel. Average width (𝑤𝑤�), and number of channels in the cross section (#c) are displayed. 885 
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 893 

  894 

Fig. 10: The differences between AirSWOT and PT observations of WSEs (a) and slopes (b) 895 
versus differences in calculated discharge values when using AirSWOT observations versus PT 896 
observations of WSE and slope. Colored dots represent the different pressure transducer (PT) 897 
locations. 898 
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