70 research outputs found

    Applying Mining Techniques to Analyze Vestibular Data

    Get PDF
    AbstractThe vestibular apparatus allows to perform audiological and equilibrium human functions and to capture movements with respect to gravity. Damages to the vestibular system causes diseases that can be measured by using Vestibular Evoked Myogenic Potentials (VEMPs) test. The test produces a lot of data that has to be collected and analyzed to allow a disease study and classification. We propose a framework that includes algorithms able to perform pathology distribution and classification. It has been tested on electronic patient records loaded from the University Hospital database. The software allows to manage the structure and framework and a blind application of one of the available classification techniques shows a relation among gender and vestibular apparatus disease

    Altered Insular and Occipital Responses to Simulated Vertical Self-Motion in Patients with Persistent Postural-Perceptual Dizziness.

    Get PDF
    BACKGROUND: Persistent postural-perceptual dizziness (PPPD) is a common functional vestibular disorder characterized by persistent symptoms of non-vertiginous dizziness and unsteadiness that are exacerbated by upright posture, self-motion, and exposure to complex or moving visual stimuli. Recent physiologic and neuroimaging data suggest that greater reliance on visual cues for postural control (as opposed to vestibular cues-a phenomenon termed visual dependence) and dysfunction in central visuo-vestibular networks may be important pathophysiologic mechanisms underlying PPPD. Dysfunctions are thought to involve insular regions that encode recognition of the visual effects of motion in the gravitational field. METHODS: We tested for altered activity in vestibular and visual cortices during self-motion simulation obtained via a visual virtual-reality rollercoaster stimulation using functional magnetic resonance imaging in 15 patients with PPPD and 15 healthy controls (HCs). We compared between groups differences in brain responses to simulated displacements in vertical vs horizontal directions and correlated the difference in directional responses with dizziness handicap in patients with PPPD. RESULTS: HCs showed increased activity in the anterior bank of the central insular sulcus during vertical relative to horizontal motion, which was not seen in patients with PPPD. However, for the same comparison, dizziness handicap correlated positively with activity in the visual cortex (V1, V2, and V3) in patients with PPPD. CONCLUSION: We provide novel insight into the pathophysiologic mechanisms underlying PPPD, including functional alterations in brain processes that affect balance control and reweighting of space-motion inputs to favor visual cues. For patients with PPPD, difficulties using visual data to discern the effects of gravity on self-motion may adversely affect balance control, particularly for individuals who simultaneously rely too heavily on visual stimuli. In addition, increased activity in the visual cortex, which correlated with severity of dizziness handicap, may be a neural correlate of visual dependence

    Sub-clinical effects of chronic noise exposure on vestibular system

    Get PDF
    Aim: to investigate the effect of chronic noise exposure on vestibular function of subjects without clinical evidence of vestibular disorders and with documented cochlear damage from noise. Subjects and methods: 25 patients with chronic noiseinduced hearing loss (NIHL) and without vestibular complaints (group A) and 25 matched controls with sensorineural hearing loss without noise exposure (group B), underwent audiological and vestibular test including caloric and cervical vestibular-evoked myogenic potentials tests (cVEMPs). Results: In subjects chronically exposed to noise, similarly to that of the auditory threshold, an increase in the evocation threshold of VEMPs has been documented, statistically significant (p<0,05) and independent of the performance of the auditory threshold. p1-n1 amplitude values showed a significant difference between group A and group B. No significant difference for p1-n1 latencies between the two groups was found. Conclusion: We have documented the possibility of vestibular lesion, along with cochlear damage, related to chronic acoustic trauma

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the correlation between the polar angles of leptons from top quark decays in the helicity basis at √s = 7 TeV using the ATLAS detector

    Get PDF
    A measurement of the correlations between the polar angles of leptons from the decay of pair-produced t and t̄ quarks in the helicity basis is reported, using proton-proton collision data collected by the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 4.6  fb−¹ at a center-of-mass energy of √s = 7  TeV collected during 2011. Candidate events are selected in the dilepton topology with large missing transverse momentum and at least two jets. The angles θ1 and θ2 between the charged leptons and the direction of motion of the parent quarks in the tt̄ rest frame are sensitive to the spin information, and the distribution of cosθ1 ⋅ cosθ2 is sensitive to the spin correlation between the t and t̄ quarks. The distribution is unfolded to parton level and compared to the next-to-leading order prediction. A good agreement is observed

    Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    Many extensions of the Standard Model posit the existence of heavy particles with long lifetimes. This article presents the results of a search for events containing at least one long-lived particle that decays at a significant distance from its production point into two leptons or into five or more charged particles. This analysis uses a data sample of proton-proton collisions at √s=8  TeV corresponding to an integrated luminosity of 20.3  fb−1 collected in 2012 by the ATLAS detector operating at the Large Hadron Collider. No events are observed in any of the signal regions, and limits are set on model parameters within supersymmetric scenarios involving R-parity violation, split supersymmetry, and gauge mediation. In some of the search channels, the trigger and search strategy are based only on the decay products of individual long-lived particles, irrespective of the rest of the event. In these cases, the provided limits can easily be reinterpreted in different scenarios

    Measurement of the CP-violating phase ϕs and the Bs0 meson decay width difference with Bs0 → J/ψϕ decays in ATLAS

    Get PDF
    A measurement of the Bs0 decay parameters in the Bs0 → J/ψϕ channel using an integrated luminosity of 14.3 fb−1 collected by the ATLAS detector from 8 TeV pp collisions at the LHC is presented. The measured parameters include the CP -violating phase ϕs, the decay width Γs and the width difference between the mass eigenstates ΔΓs. The values measured for the physical parameters are statistically combined with those from 4.9 fb−1 of 7 TeV data, leading to the following: ϕ s =−0.090±0.078(stat.)±0.041(syst.)rad ΔΓ s =0.085±0.011(stat.)±0.007(syst.)ps −1 Γ s =0.675±0.003(stat.)±0.003(syst.)ps −1 In the analysis the parameter ΔΓs is constrained to be positive. Results for ϕs and ΔΓs are also presented as 68% and 95% likelihood contours in the ϕs-ΔΓs plane. Also measured in this decay channel are the transversity amplitudes and corresponding strong phases. All measurements are in agreement with the Standard Model predictions

    Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in s =8 TeV proton-proton collisions using the ATLAS detector

    Get PDF
    The differential cross-section for pair production of top quarks with high transverse momentum is measured in 20.3  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The measurement is performed for tt¯ events in the lepton+jets channel. The cross-section is reported as a function of the hadronically decaying top quark transverse momentum for values above 300 GeV. The hadronically decaying top quark is reconstructed as an anti-kt jet with radius parameter R=1.0 and identified with jet substructure techniques. The observed yield is corrected for detector effects to obtain a cross-section at particle level in a fiducial region close to the event selection. A parton-level cross-section extrapolated to the full phase space is also reported for top quarks with transverse momentum above 300 GeV. The predictions of a majority of next-to-leading-order and leading-order matrix-element Monte Carlo generators are found to agree with the measured cross-sections.- We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) an

    Measurement of the production cross-section of a single top quark in association with a W boson at 8 TeV with the ATLAS experiment

    Get PDF
    The cross-section for the production of a single top quark in association with a W boson in proton-proton collisions at s√=8TeV is measured. The dataset corresponds to an integrated luminosity of 20.3 fb−1, collected by the ATLAS detector in 2012 at the Large Hadron Collider at CERN. Events containing two leptons and one central b-jet are selected. The W t signal is separated from the backgrounds using boosted decision trees, each of which combines a number of discriminating variables into one classifier. Production of W t events is observed with a significance of 7.7σ. The cross-section is extracted in a profile likelihood fit to the classifier output distributions. The W t cross-section, inclusive of decay modes, is measured to be 23.0 ± 1.3(stat.)− 3.5+ 3.2(syst.)±1.1(lumi.) pb. The measured cross-section is used to extract a value for the CKM matrix element |Vtb| of 1.01 ± 0.10 and a lower limit of 0.80 at the 95% confidence level. The cross-section for the production of a top quark and a W boson is also measured in a fiducial acceptance requiring two leptons with pT> 25 GeV and |η| 20 GeV and |η|  20 GeV, including both W t and top-quark pair events as signal. The measured value of the fiducial cross-section is 0.85 ± 0.01(stat.)− 0.07+ 0.07(syst.)±0.03(lumi.) pb
    corecore