6 research outputs found

    Commercial photovoltaic system design for Cardiff City Hall

    No full text
    The rooftops of Cardiff City Hall were surveyed to establish potential areas for commercial-scale photovoltaic (PV) system design. The orientation and tilt angles of suitable unshaded roof areas were measured for accurate PV system simulation. The performance of two PV technologies, polycrystalline silicon (p-Si) and heterojunction with intrinsic thin layers (HIT) was investigated. From the analysis of simulation, experimental, environmental and economic data, HIT was found to be the best-performing PV technology for system installation. Superior performance of HIT under diffuse sunlight conditions, typical of the UK climate, was demonstrated. Additionally, the maximum power temperature coefficient, verified during experimental work, was lower than the p-Si alternative (−0·28 against −0·50%/°C). Electricity demand data for City Hall were analysed and 8·1% of the annual electricity demand (solar fraction) could be supplied by an 88 kWp HIT PV system. The HIT PV system modelled would significantly improve the energy performance of Cardiff City Hall, avoiding >40 000 kg carbon dioxide emissions annually. The levelised cost of energy from one array (B, £0·11/kWh) was less than the current day tariff rate for grid import (£0·1173). The economic and environmental benefits of well-designed high-efficiency PV systems in the UK at commercial scale are also demonstrated

    References

    No full text
    corecore