33 research outputs found

    Myeloperoxidase induces monocyte migration and activation after acute myocardial infarction

    Get PDF
    IntroductionMyocardial infarction (MI) is a significant contributor to morbidity and mortality worldwide. Many individuals who survive the acute event continue to experience heart failure (HF), with inflammatory and healing processes post-MI playing a pivotal role. Polymorphonuclear neutrophils (PMN) and monocytes infiltrate the infarcted area, where PMN release high amounts of the heme enzyme myeloperoxidase (MPO). MPO has numerous inflammatory properties and MPO plasma levels are correlated with prognosis and severity of MI. While studies have focused on MPO inhibition and controlling PMN infiltration into the infarcted tissue, less is known on MPO’s role in monocyte function.Methods and resultsHere, we combined human data with mouse and cell studies to examine the role of MPO on monocyte activation and migration. We revealed a correlation between plasma MPO levels and monocyte activation in a patient study. Using a mouse model of MI, we demonstrated that MPO deficiency led to an increase in splenic monocytes and a decrease in cardiac monocytes compared to wildtype mice (WT). In vitro studies further showed that MPO induces monocyte migration, with upregulation of the chemokine receptor CCR2 and upregulation of inflammatory pathways identified as underlying mechanisms.ConclusionTaken together, we identify MPO as a pro-inflammatory mediator of splenic monocyte recruitment and activation post-MI and provide mechanistic insight for novel therapeutic strategies after ischemic injury

    Macrophages retain hematopoietic stem cells in the spleen via VCAM-1

    Get PDF
    Splenic myelopoiesis provides a steady flow of leukocytes to inflamed tissues, and leukocytosis correlates with cardiovascular mortality. Yet regulation of hematopoietic stem cell (HSC) activity in the spleen is incompletely understood. Here, we show that red pulp vascular cell adhesion molecule 1 (VCAM-1)[superscript +] macrophages are essential to extramedullary myelopoiesis because these macrophages use the adhesion molecule VCAM-1 to retain HSCs in the spleen. Nanoparticle-enabled in vivo RNAi silencing of the receptor for macrophage colony stimulation factor (M-CSFR) blocked splenic macrophage maturation, reduced splenic VCAM-1 expression and compromised splenic HSC retention. Both, depleting macrophages in CD169 iDTR mice or silencing VCAM-1 in macrophages released HSCs from the spleen. When we silenced either VCAM-1 or M-CSFR in mice with myocardial infarction or in ApoE[superscript −/−] mice with atherosclerosis, nanoparticle-enabled in vivo RNAi mitigated blood leukocytosis, limited inflammation in the ischemic heart, and reduced myeloid cell numbers in atherosclerotic plaques

    MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision

    Full text link
    Prior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today, MedShapeNet includes 23 dataset with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present use cases in the fields of classification of brain tumors, facial and skull reconstructions, multi-class anatomy completion, education, and 3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and https://github.com/Jianningli/medshapenet-feedbackComment: 16 page

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    Protective effects of rituximab on puromycin-induced apoptosis, loss of adhesion and cytoskeletal alterations in human podocytes

    No full text
    Abstract Podocytes are highly specialized cells playing a key role in the filtration function of the kidney. A damaged podocyte ultrastructure is associated with a reorganization of the actin cytoskeleton and accompanied with a loss of adhesion to the glomerular basement membrane leading to proteinuria in many forms of glomerular diseases, e.g. nephrotic syndrome. If the first-line therapy with glucocorticoids fails, alternative immunosuppressive agents are used, which are known to have the potential to stabilize the actin cytoskeleton. A new option for preventing relapses in steroid dependent nephrotic syndrome is the monoclonal antibody rituximab, which, in addition to its B-cell depleting effect, is assumed to have direct effects on podocytes. We here provide data on the non-immunological off-target effects of the immunosuppressant rituximab on podocyte structure and dynamics in an in vitro puromycin aminonucleoside model of podocyte injury. A conditionally immortalized human podocyte cell line was used. Differentiated podocytes were treated with puromycin aminonucleoside and rituximab. Our studies focussed on analyzing the structure of the actin cytoskeleton, cellular adhesion and apoptosis using immunofluorescence staining and protein biochemistry methods. Treatment with rituximab resulted in a stabilization of podocyte actin stress fibers in the puromycin aminonucleoside model, leading to an improvement in cell adhesion. A lower apoptosis rate was observed after parallel treatment with puromycin aminonucleoside and rituximab visualized by reduced nuclear fragmentation. Consistent with this data, Western-blot analyses demonstrated that rituximab directly affects the caspase pathways by inhibiting the activation of Caspases-8, -9 and -3, suggesting that rituximab may inhibit apoptosis. In conclusion, our results indicate an important role of the immunosuppressant rituximab in terms of stability and morphogenesis of podocytes, involving apoptosis pathways. This could help to improve therapeutical concepts for patients with proteinuria mediated by diseased podocytes

    Protective effects of the mTOR inhibitor everolimus on cytoskeletal injury in human podocytes are mediated by RhoA signaling

    Get PDF
    Podocytes are highly differentiated kidney cells playing an important role in maintaining the glomerular filtration barrier. Particularly, the integrity of the actin cytoskeleton is crucial as cytoskeletal damage associated with foot process effacement and loss of slit diaphragms constitutes a major aspect of proteinuria. Previously, the mammalian target of rapamycin (mTOR) was linked to actin regulation and aberrant activity of the kinase was associated with renal disease. In this study, actin-related effects of mTOR inhibition by the immunosuppressant everolimus (EV) were investigated in human podocytes using an in vitro model of puromycin aminonucleoside (PAN) induced proteinuria. EV substantially recovered aberrant podocyte behavior by re-establishing a stationary phenotype with decreased migration efficiency, enhanced cell adhesion and recovery of actin stress fibers. Biochemical studies revealed substantial increase in the activity of RhoA and the effector pathway Rho-associated protein kinase (ROCK) and myosin light chain (MLC) by EV, all known regulators of stress fiber generation. Taken together, we show for the first time cytoskeleton stabilizing effects of the mTOR inhibitor EV and establish RhoA signaling as a key mediator in this process

    EV targets RhoA signaling pathway in human podocytes.

    No full text
    <p>(A) Biochemical assay to measure the activation level of the GTPase. The Rho-binding domain (RBD) of the RhoA effector rhotekin was used to affinity-precipitate the active fraction of endogenous RhoA (GTP-RhoA) from cell lysates (representative example from 3 independent experiments). Tubulin was used as loading control. (B) Quantification of total RhoA protein (n = 3 experiments). For quantification, total RhoA protein was normalized with respect to tubulin from whole cell lysates. (C) To quantify the amount of active RhoA protein, GTP-bound RhoA was normalized with respect to total RhoA (n = 3 experiments). (D) Western-blot analysis of MLC protein (representative example from 4 independent experiments). GAPDH = loading control, MLC = total MLC protein levels, pMLC = active, phosphorylated MLC protein. (E) Quantification of total MLC protein (n = 4 experiments). For quantification, total MLC was normalized to GAPDH from whole cell lysates. (F) Quantification of phosphorylated MLC protein (n = 4 experiments). Phosphorylated MLC was normalized to total MLC from whole cell lysates. (G) Western blot analysis of MLC protein after treatment with the ROCK inhibitor Y-27632 (10 µM for 1 h; n = 2 independent experiments). (H) Actin cytoskeleton (phalloidin-TRITC, grey) after treatment with Y-27632. DAPI was used for nuclear staining (blue). Scale bar = 100 µm. MeOH = solvent for EV. Data are means ± SD.</p
    corecore