36 research outputs found

    Validation of the ONKOTEV Risk Prediction Model for Venous Thromboembolism in Outpatients With Cancer

    Get PDF
    Importance: The assessment of the risk of venous thromboembolism (VTE) among outpatients with cancer represents an unsolved topic. Current international guidelines recommend primary prophylaxis for patients at intermediate to high risk of VTE, indicated by a Khorana score of 2 or more. A previous prospective study developed the ONKOTEV score, a 4-variable risk assessment model (RAM) consisting of a Khorana score of more than 2, metastatic disease, vascular or lymphatic compression, and previous VTE event. Objective: To validate the ONKOTEV score as a novel RAM to assess the risk of VTE among outpatients with cancer. Design, setting, and participants: ONKOTEV-2 is a noninterventional prognostic study conducted in 3 European centers located in Italy, Germany, and the United Kingdom among a prospective cohort of 425 ambulatory patients with a histologically confirmed diagnosis of a solid tumor who were receiving active treatments. The total study duration was 52 months, with an accrual period of 28 months (from May 1, 2015, to September 30, 2017) and an overall follow up-period of 24 months (data were censored September 30, 2019). Statistical analysis was performed in October 2019. Exposures: The ONKOTEV score was calculated for each patient at baseline by collecting clinical, laboratory, and imaging data from tests performed for routine practice. Each patient was then observed to detect any thromboembolic event throughout the study period. Main outcomes and measures: The primary outcome of the study was the incidence of VTE, including deep vein thrombosis and pulmonary embolism. Results: A total of 425 patients (242 women [56.9%]; median age, 61 years [range, 20-92 years]) were included in the validation cohort of the study. The cumulative incidences for the risk of developing VTE at 6 months were 2.6% (95% CI, 0.7%-6.9%), 9.1% (95% CI, 5.8%-13.2%), 32.3% (95% CI, 21.0%-44.1%), and 19.3% (95% CI, 2.5%-48.0%), respectively, among 425 patients with an ONKOTEV score of 0, 1, 2, and greater than 2 (P < .001). The time-dependent area under the curve at 3, 6, and 12 months was 70.1% (95% CI, 62.1%-78.7%), 72.9% (95% CI, 65.6%-79.1%), and 72.2% (95% CI, 65.2%-77.3%), respectively. Conclusions and relevance: This study suggests that, because the ONKOTEV score has been validated in this independent study population as a novel predictive RAM for cancer-associated thrombosis, it can be adopted into practice and into clinical interventional trials as a decision-making tool for primary prophylaxis

    Association between anemia and quality of life in a population sample of individuals with chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Several studies investigated the association of anemia with health related quality of life (HRQL) in patients with chronic disease. However, there is little evidence regarding the association of anemia with HRQL in patients with chronic obstructive pulmonary disease (COPD). METHODS: This is a post-hoc analysis of a study which enrolled a population of adults aged 35–79 randomly selected from residents of Erie and Niagara Counties, NY, between 1996 and 2000. In addition to demographic information and physical measurements, we obtained spirometry data and hemoglobin levels. We used modified Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria to define COPD, and World Health Organization (WHO) criteria to define anemia. To assess HRQL we used the Short Form-36 (SF-36) to assess physical functioning (PF), physical component summary (PCS) measures and mental component summary (MCS) measures. RESULTS: In the entire study population (n = 2704), respondents with anemia had lower scores on the physical functioning domain [45.4 (SD10.9) vs. 49.2 (SD 9.1); p < 0.0001]. Among patients with COPD (n = 495) the PF scores (39.9 vs. 45.4) and the PCS (41.9 vs. 45.9) were significantly lower in individuals with anemia compared to those without. In multiple regression analysis, the association between hemoglobin and PCS was positive (regression coefficient 0.02, p = 0.003). There was no significant association of hemoglobin with PF scores or the mental component summary measure after adjusting for covariates in patients with COPD. CONCLUSION: In patients with moderate to very severe COPD anemia may be associated with worse HRQL. However, co-morbidities may explain part or all of this association in these patients

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    GRAWITA: VLT Survey Telescope observations of the gravitational wave sources GW150914 and GW151226

    Get PDF
    We report the results of deep optical follow-up surveys of the first two gravitational-wave sources, GW150914 and GW151226, done by the GRAvitational Wave Inaf TeAm Collaboration (GRAWITA). The VLT Survey Telescope (VST) responded promptly to the gravitational wave alerts sent by the LIGO and Virgo Collaborations, monitoring a region of 90 and 72 deg2 for GW150914 and GW151226, respectively, and repeated the observations over nearly two months. Both surveys reached an average limiting magnitude of about 21 in the r band. The paper describes the VST observational strategy and two independent procedures developed to search for transient counterpart candidates in multi-epoch VST images. Several transients have been discovered but no candidates are recognized to be related to the gravitational wave events. Interestingly, among many contaminant supernovae, we find a possible correlation between the supernova VSTJ57.77559-59.13990 and GRB 150827A detected by Fermi-GBM. The detection efficiency of VST observations for different types of electromagnetic counterparts of gravitational wave events is evaluated for the present and future follow-up surveys

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ȯ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore