509 research outputs found
The Rydberg-Atom-Cavity Axion Search
We report on the present progress in development of the dark matter axion
search experiment with Rydberg-atom-cavity detectors in Kyoto, CARRACK I and
CARRACK II. The axion search has been performed with CARRACK I in the 8 % mass
range around , and CARRACK II is now ready for the search in
the wide range . We have also developed
quantum theoretical calculations on the axion-photon-atom system in the
resonant cavity in order to estimate precisely the detection sensitivity for
the axion signal. Some essential features on the axion-photon-atom interaction
are clarified, which provide the optimum experimental setup for the axion
search.Comment: 8 pages, 2 figures, Invited talk presented at the Dark2000,
Heidelberg, Germany,10-15 July, 200
Adjusting to bodily change following stoma formation: a phenomenological study
Purpose: Scant research has been undertaken to explore in-depth the meaning of bodily change for individuals following stoma formation. The aim of this study was to understand the experience of living with a new stoma, with a focus on bodily change. Method: The study adopted a longitudinal phenomenological approach. Purposeful sampling was used to recruit twelve participants who had undergone faecal stoma-forming surgery. Indepth, unstructured interviews were conducted at three, nine and fifteen months following surgery. A five-stage framework facilitated iterative data analysis. Results: Stoma formation altered the taken-for-granted relationship individuals had with their bodies in terms of appearance, function and sensation, undermining the unity between body and self. Increasing familiarity with and perceived control over their stoma over time diminished awareness of their changed body, facilitating adaptation and self-acceptance. Conclusions: Stoma formation can undermine an individual’s sense of embodied self. A concept of embodiment is proposed to enable the experience of living with a new stoma to be understood as part of a wider process of re-establishing a unity between body, self and world. In defining a framework of care, individuals with a new stoma can be assisted to adapt to and accept a changed sense of embodied self
I Me Mine: on a Confusion Concerning the Subjective Character of Experience
In recent debates on phenomenal consciousness, a distinction is sometimes made, after Levine (2001) and Kriegel (2009), between the “qualitative character” of an experience, i.e. the specific way it feels to the subject (e.g. blueish or sweetish or pleasant), and its “subjective character”, i.e. the fact that there is anything at all that it feels like to her. I argue that much discussion of subjective character is affected by a conflation between three different notions. I start by disentangling the three notions in question, under the labels of “for-me-ness”, “me-ness” and “mineness”. Next, I argue that these notions are not equivalent; in particular, there is no conceptual implication from for-me-ness to me-ness or mineness. Empirical considerations based on clinical cases additionally suggest that the three notions may also correspond to different properties (although the claim of conceptual non-equivalence does not depend on this further point). The aim is clarificatory, cautionary but also critical: I examine four existing arguments from subjective character that are fuelled by an undifferentiated use of the three notions, and find them to be flawed for this reason
Recommended from our members
First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA.
The NOvA experiment has seen a 4.4σ signal of ν[over ¯]_{e} appearance in a 2 GeV ν[over ¯]_{μ} beam at a distance of 810 km. Using 12.33×10^{20} protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν[over ¯]_{μ}→ν[over ¯]_{e} candidates with a background of 10.3 and 102 ν[over ¯]_{μ}→ν[over ¯]_{μ} candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm_{32}^{2}|=2.48_{-0.06}^{+0.11}×10^{-3} eV^{2}/c^{4} and sin^{2}θ_{23} in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δ_{CP}=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ_{23} values in the upper octant by 1.6σ
Recommended from our members
Observation of seasonal variation of atmospheric multiple-muon events in the NOvA Near Detector
Using two years of data from the NOvA Near Detector at Fermilab, we report a seasonal variation of cosmic ray induced multiple-muon (Nμ≥2) event rates which has an opposite phase to the seasonal variation in the atmospheric temperature. The strength of the seasonal multiple-muon variation is shown to increase as a function of the muon multiplicity. However, no significant dependence of the strength of the seasonal variation of the multiple-muon variation is seen as a function of the muon zenith angle, or the spatial or angular separation between the correlated muons
Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesOver the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15).We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls).We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10(-6)). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23.This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4.National Institutes of Mental Health (NIMH, USA)
ACE Network
Autism Genetic Resource Exchange (AGRE) is a program of Autism Speaks (USA)
The Autism Genome Project (AGP) from Autism Speaks (USA)
Canadian Institutes of Health Research (CIHR), Genome Canada
Health Research Board (Ireland)
Hilibrand Foundation (USA)
Medical Research Council (UK)
National Institutes of Health (USA)
Ontario Genomics Institute
University of Toronto McLaughlin Centre
Simons Foundation
Johns Hopkins
Autism Consortium of Boston
NLM Family foundation
National Institute of Health grants
National Health Medical Research Council
Scottish Rite
Spunk Fund, Inc.
Rebecca and Solomon Baker Fund
APEX Foundation
National Alliance for Research in Schizophrenia and Affective Disorders (NARSAD)
endowment fund of the Nancy Pritzker Laboratory (Stanford)
Autism Society of America
Janet M. Grace Pervasive Developmental Disorders Fund
The Lundbeck Foundation
universities and university hospitals of Aarhus and Copenhagen
Stanley Foundation
Centers for Disease Control and Prevention (CDC)
Netherlands Scientific Organization
Dutch Brain Foundation
VU University Amsterdam
Trinity Centre for High Performance Computing through Science Foundation Ireland
Autism Genome Project (AGP) from Autism Speak
Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere
Neoproterozoic (1,000–542 Myr ago) Earth experienced profound environmental change, including ‘snowball’ glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution
First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA
The NOvA experiment has seen a 4.4σ signal of ν̄e appearance in a 2 GeV ν̄μ beam at a distance of 810 km. Using 12.33×1020 protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν̄μ→ν̄e candidates with a background of 10.3 and 102 ν̄μ→ν̄μ candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm322|=2.48-0.06+0.11×10-3 eV2/c4 and sin2θ23 in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δCP=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ23 values in the upper octant by 1.6σ
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders
Autism spectrum disorder (ASD) risk is influenced by common polygenic and de novo variation. We aimed to clarify the influence of polygenic risk for ASD and to identify subgroups of ASD cases, including those with strongly acting de novo variants, in which polygenic risk is relevant. Using a novel approach called the polygenic transmission disequilibrium test and data from 6,454 families with a child with ASD, we show that polygenic risk for ASD, schizophrenia, and greater educational attainment is over-transmitted to children with ASD. These findings hold independent of proband IQ. We find that polygenic variation contributes additively to risk in ASD cases who carry a strongly acting de novo variant. Lastly, we show that elements of polygenic risk are independent and differ in their relationship with phenotype. These results confirm that the genetic influences on ASD are additive and suggest that they create risk through at least partially distinct etiologic pathways
- …
