1,581 research outputs found

    Recombination dynamics in bacterial photosynthetic reaction centers

    Get PDF
    The time dependence of magnetic field effects on light absorption by triplet-state and radical ions in quinone-depleted reaction centers of Rhodopseudomonas sphaeroides strain R-26 has been investigated. Measurements on the time scale of the hyperfine interaction in the radical pair [(BChl)2+. ...BPh-.)] provided kinetic data characterizing the recombination process. The results have been interpreted in terms of a recently proposed model that assumes an intermediate electron acceptor (close site) between the bacteriochlorophyll "special pair" (BChl)2 and the bacteriopheophytin BPh (distant site). Recombination is assumed to proceed through this intermediate acceptor. The experiments led to effective recombination rates for the singlet and triplet channel: k(Seff) = 3.9 . 107 s-1 and k(Teff) = 7.4 . 10(8) s-1. These correspond to recombination rates ks = 1 . 10(1) s-1 and kT = 7.1 . 10(11) s-1 in the close configuration. The upper bound of the effective spin dephasing rate k2eff approximately equal to 1 . 10(9) s-1 is identical with the rate of the electron hopping between the distant site of zero spin exchange interaction and the close site of large interaction. Interpretation of data for the case of direct recombination yields the recombination rates, spin dephasing rate, and exchange interaction in a straightforward way

    Time-resolved measurements of fluorescence from reaction centres of Rhodopseudomonas viridis and the effect of menaquinone reduction

    Get PDF
    AbstractThe kinetics of the fluorescence emitted by the ‘special pair’ of bacteriochlorophyll b molecules in reaction centres from Rhodopseudomonas viridis was recorded in the near infrared, with a time resolution of 1 ns. In nonreduced reaction centres two decay components were resolved with lifetimes of <0.5 and 2.5 ns. Upon reduction of the menaquinone electron acceptor three decay components were detected with lifetimes of < 0.5, 2.5 and 15ns

    CHEMICALLY MODIFIED PHOTOSYNTHETIC BACTERIAL REACTION CENTERS: CIRCULAR DICHROISM, RAMAN RESONANCE, LOW TEMPERATURE ABSORPTION, FLUORESCENCE AND ODMR SPECTRA AND POLYPEPTIDE COMPOSITION OF BOROHYDRIDE TREATED REACTION CENTERS FROM Rhodobacter sphaeroides R26

    Get PDF
    Reaction centers from Rhodobacter sphaeroides have been modified by treatment with sodium borohydride similar to the original procedure [Ditson et al., Biochim. Biophys. Acta 766, 623 (1984)], and investigated spectroscopically and by gel electrophoresis. (1) Low temperature (1.2 K) absorption, fluorescence, absorption- and fluorescence-detected ODMR, and microwave-induced singlet-triplet absorption difference spectra (MIA) suggest that the treatment produces a spectroscopically homogeneous preparation with one of the ‘additional’ bacteriochlorophylls being removed. The modification does not alter the zero field splitting parameters of the primary donor triplet (TP870). (2) From the circular dichroism and Raman resonance spectra in the1500–1800 cm-1 region, the removed pigment is assigned to BchlM, e.g. the "extra" Bchl on the "inactive" M-branch. (3) A strong coupling among all pigment molecules is deduced from the circular dichroism spectra, because pronounced band-shifts and/or intensity changes occur in the spectral components assigned to all pigments. This is supported by distinct differences among the MIA spectra of untreated and modified reaction centers, as well as by Raman resonance. (4) The modification is accompanied by partial proteolytic cleavage of the M-subunit. The preparation is thus spectroscopically homogeneous, but biochemically heterogenous

    Temperature dependence of the primary electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides

    Get PDF
    The primary electron transfer (ET) in reaction centers (RC) of Rhodobacter sphaeroides is investigated as a function of temperature with femtosecond time resolution. For temperatures from 300 to 25 K the ET to the bacteriopheophytin is characterized by a biphasic time dependence. The two time constants of τ1=3.5±0.4 ps and τ2=1.2±0.3 ps at T=300 K decrease continously with temperature to values of τ1=1.4±0.3 ps and τ2=0.3±0.15 ps at 25 K. The experimental results indicate that the ET is not thermally activated and that the same ET mechanisms are active at room and low temperatures. All observations are readily rationalized by a two-step ET model with the monomeric bacteriochlorophyll as a real electron carrier

    Energetics of the primary electron transfer reaction revealed by ultrafast spectroscopy on modified bacterial reaction centers

    Get PDF
    The modification of reaction centers from Rhodobacter sphaeroides by the introduction of pheophytins instead of bacteriopheophytins leads to interesting changes in the primary photosynthetic reaction: long-living populations of the excited electronic state of the special pair P* and the bacteriochlorophyll anion B−A show up. The data allow the determination of the energetics in the reaction center. The free energy of the first intermediate P+B−A, where the electron has reached the accessory bacteriochlorophyll BA lies ≈ 450 cm−1 below the initially excited special pair P*

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore