50 research outputs found

    Daisyworld: a review

    No full text
    Daisyworld is a simple planetary model designed to show the long-term effects of coupling between life and its environment. Its original form was introduced by James Lovelock as a defense against criticism that his Gaia theory of the Earth as a self-regulating homeostatic system requires teleological control rather than being an emergent property. The central premise, that living organisms can have major effects on the climate system, is no longer controversial. The Daisyworld model has attracted considerable interest from the scientific community and has now established itself as a model independent of, but still related to, the Gaia theory. Used widely as both a teaching tool and as a basis for more complex studies of feedback systems, it has also become an important paradigm for the understanding of the role of biotic components when modeling the Earth system. This paper collects the accumulated knowledge from the study of Daisyworld and provides the reader with a concise account of its important properties. We emphasize the increasing amount of exact analytic work on Daisyworld and are able to bring together and summarize these results from different systems for the first time. We conclude by suggesting what a more general model of life-environment interaction should be based on

    Site fidelity and localised homing behaviour in three-spined sticklebacks (Gasterosteus aculeatus)

    Get PDF
    The ability of animals to disperse towards their original home range following displacement has been demonstrated in a number of species. However, little is known about the homing ability of three-spine sticklebacks (Gasterosteus aculeatus), an important model species in behavioural ecology. In addition, few studies have examined the role of social facilitation in relation to homing behaviour in fishes. We examined homing behaviour of sticklebacks displaced over distances of between 80 m and 160 m in land-drains with directional water flow. Fish were translocated from their original capture site, tagged and then released either in groups or solitarily. We performed recapture transects either one or two days later. Data provided by recaptured sticklebacks show that the fish dispersed in the direction of their original capture site. Although fish translocated downstream typically moved further than those translocated upstream, both dispersed towards their original capture site. There was no difference between fish released solitarily or in groups in their homing ability and indeed there was little evidence that fish translocated in groups remained together following their release. The homing ability of the fish was demonstrated by the finding that up to 80% of fish returned to their home ranges within two days of release over a distance equivalent to approximately 5000 body lengths of these small fish. © Koninklijke Brill NV, Leiden, The Netherlands

    A Conceptual Model of Vegetation-hydrogeomorphology Interactions Within River Corridors

    Get PDF
    This is the peer reviewed version of the following article: M. GURNELL, D. CORENBLITc, D. GARCÍA DE JALÓN, M. GONZÁLEZ DEL TÁNAGO, R. C. GRABOWSKI, M. T. O’HARE, M. SZEWCZYK (2015) A conceptual model of vegetationhydrogeomorphology interactions within river corridors. River Research and Applications (early view), which has been published in final form at 10.1002/rra.2928. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.European Union. Grant Number: no. 28265

    The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?

    Get PDF
    The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework

    Evolutionary aspects of self- and world consciousness in vertebrates

    Get PDF
    Although most aspects of world and self-consciousness are inherently subjective, neuroscience studies in humans and non-human animals provide correlational and causative indices of specific links between brain activity and representation of the self and the world. In this article we review neuroanatomic, neurophysiological and neuropsychological data supporting the hypothesis that different levels of self and world representation in vertebrates rely upon (i) a \u201cbasal\u201d subcortical system that includes brainstem, hypothalamus and central thalamic nuclei and that may underpin the primary (or anoetic) consciousness likely present in all vertebrates; and (ii) a forebrain system that include the medial and lateral structures of the cerebral hemispheres and may sustain the most sophisticated forms of consciousness [e.g., noetic (knowledge based) and autonoetic, reflective knowledge]. We posit a mutual, bidirectional functional influence between these two major brain circuits. We conclude that basic aspects of consciousness like primary self and core self (based on anoetic and noetic consciousness) are present in many species of vertebrates and that, even self-consciousness (autonoetic consciousness) does not seem to be a prerogative of humans and of some non-human primates but may, to a certain extent, be present in some other mammals and bird

    Self domestication and the evolution of language

    Get PDF

    Revisiting the Gaia Hypothesis: Maximum Entropy, Kauffman’s ‘Fourth Law’ and Physiosemeiosis

    Full text link
    corecore