7,776 research outputs found

    Multiple Testing for Exploratory Research

    Full text link
    Motivated by the practice of exploratory research, we formulate an approach to multiple testing that reverses the conventional roles of the user and the multiple testing procedure. Traditionally, the user chooses the error criterion, and the procedure the resulting rejected set. Instead, we propose to let the user choose the rejected set freely, and to let the multiple testing procedure return a confidence statement on the number of false rejections incurred. In our approach, such confidence statements are simultaneous for all choices of the rejected set, so that post hoc selection of the rejected set does not compromise their validity. The proposed reversal of roles requires nothing more than a review of the familiar closed testing procedure, but with a focus on the non-consonant rejections that this procedure makes. We suggest several shortcuts to avoid the computational problems associated with closed testing.Comment: Published in at http://dx.doi.org/10.1214/11-STS356 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Constructivist View of Newton’s Mechanics

    Get PDF
    In the present essay we attempt to reconstruct Newtonian mechanics under the guidance of logical principles and of a constructive approach related to the genetic epistemology of Piaget and García (Psychogenesis and the history of science, Columbia University Press, New York, 1989). Instead of addressing Newton’s equations as a set of axioms, ultimately given by the revelation of a prodigious mind, we search for the fundamental knowledge, beliefs and provisional assumptions that can produce classical mechanics. We start by developing our main tool: the no arbitrariness principle, that we present in a form that is apt for a mathematical theory as classical mechanics. Subsequently, we introduce the presence of the observer, analysing then the relation objective–subjective and seeking objectivity going across subjectivity. We take special care of establishing the precedence among all contributions to mechanics, something that can be better appreciated by considering the consequences of removing them: (a) the consequence of renouncing logic and the laws of understanding is not being able to understand the world, (b) renouncing the early elaborations of primary concepts such as time and space leads to a dissociation between everyday life and physics, the latter becoming entirely pragmatic and justified a-posteriori (because it is convenient), (c) changing our temporary beliefs has no real cost other than effort. Finally, we exemplify the present approach by reconsidering the constancy of the velocity of light. It is shown that it is a result of Newtonian mechanics, rather than being in contradiction with it. We also indicate the hidden assumption that leads to the (apparent) contradiction.Fil: Solari, Hernan Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Natiello, Mario Alberto. Lund University; Sueci

    The construction of Electromagnetism

    Get PDF
    Abstract We examine the construction of electromagnetism in its current form, and in an alternative form, from a point of view that combines a minimal realism with strict rational demands. We begin by discussing the requests of reason when constructing a theory and next, we follow the historical development as presented in the record of original publications, the underlying epistemology (often explained by the authors) and the mathematical constructions. The historical construction develops along socio-political disputes (mainly, the reunification of Germany and the second industrial revolution), epistemic disputes (at least two demarcations of science in conflict) and several theories of electromagnetism. Such disputes resulted in the militant adoption of the ether by some, a position that expanded in parallel with the expansion of Prussia. This way of thinking was facilitated by the earlier adoption of a standpoint that required, as a condition for understanding, the use of physical hypothesis in the form of analogies; an attitude that is antithetic to Newton's “hypotheses non fingo”. While the material ether was finally abandoned, the epistemology survived in the form of “substantialism” and a metaphysical ether: the space. The militants of the ether attributed certainties regarding the ether to Faraday and Maxwell, when they only expressed doubts and curiosity. Thus, the official story is not the real history. This was achieved by the operation of detaching Maxwell's electromagnetism from its construction and introducing a new game of formulae and interpretations. Large and important parts of Maxwell work are today not known, as for example, the rules for the transformation of the electromagnetic potentials between moving systems. When experiments showed that all the theories based in the material ether were incorrect, a new interpretation was offered: Special Relativity (SR). At the end of the transformation period a pragmatic view of science, well adapted to the industrial society, had emerged, as well as a new protagonist: the theoretical physicist. The rival theory of delayed action at distance initiated under the influence of Gauss was forgotten in the midst of the intellectual warfare. The theory is indistinguishable in formulae from Maxwell's and its earlier versions are the departing point of Maxwell for the construction of his equations. We show in a mathematical appendix that such (relational) theory can incorporate Lorentz' contributions as well as Maxwell's transformations and C. Neumann's action, without resource to the ether. Demarcation criteria was further changed at the end of the period making room for habits and intuitions. When these intuited criteria are examined by critical reason (seeking for the fundaments) they can be sharpened with the use of the Non Arbitrariness Principle, which throws light over the arbitrariness in the construction of SR. Under a fully rational view SR is not acceptable, it requires to adopt a less demanding epistemology that detaches the concept from the conception, such as Einstein's own view in this respect, inherited from Hertz. In conclusion: we have shown in this relevant exercise how the reality we accept depends on earlier, irrational, decisions that are not offered for examination but rather are inherited from the culture
    • …
    corecore