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Abstract We set out an account of how self-domestication plays a crucial role in 
the evolution of language. In doing so, we focus on the growing body of work that 
treats language structure as emerging from the process of cultural transmission. We 
argue that a full recognition of the importance of cultural transmission fundamen-
tally changes the kind of questions we should be asking regarding the biological 
basis of language structure. If we think of language structure as reflecting an accu-
mulated set of changes in our genome, then we might ask something like, “What are 
the genetic bases of language structure and why were they selected?” However, if 
cultural evolution can account for language structure, then this question no longer 
applies. Instead, we face the task of accounting for the origin of the traits that ena-
bled that process of structure-creating cultural evolution to get started in the first 
place. In light of work on cultural evolution, then, the new question for biological 
evolution becomes, “How did those precursor traits evolve?” We identify two key 
precursor traits: (1) the transmission of the communication system through learn-
ing; and (2) the ability to infer the communicative intent associated with a signal or 
action. We then describe two comparative case studies—the Bengalese finch and the 
domestic dog—in which parallel traits can be seen emerging following domestica-
tion. Finally, we turn to the role of domestication in human evolution. We argue that 
the cultural evolution of language structure has its origin in an earlier process of 
self-domestication.
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Introduction

The last two decades have seen a resurgence of interest in the evolution of language. 
In its initial phase (e.g. Pinker and Bloom 1990), much of this work treated language 
structure as a genetically encoded biological trait. On this view, any structure seen 
in language simply reflected what was encoded in the genome, as part of a com-
plex adaptation for communication (Pinker and Jackendoff 2005). In recent years, 
however, a growing body of work has begun to show that many aspects of language 
structure are the result of language itself adapting to constraints imposed by the way 
it is transmitted (see Kirby 2017; Tamariz and Kirby 2015; Kirby et al. 2014; Dediu 
et al. 2013 for recent reviews).

This basic finding is now supported by experimental studies and computational 
modelling into a range of linguistic phenomena. These include the emergence of 
compositionality (Kirby 2002; Brighton et al. 2005; Kirby et al. 2008); morphosyn-
tactic regularity (Kirby 2002); recursive syntax (Kirby 2002); subjacency (Chris-
tiansen et  al. 2002); regularisation of variation (Smith and Wonnacott 2010); the 
emergence of arbitrary signals (Theisen et al. 2010) and discrete phonological units 
(Oudeyer 2005, 2006); and duality of patterning (Roberts and Galantucci 2012; Ver-
hoef et al. 2014). However, the implications of these findings—what they mean for 
our wider understanding of the evolution of language—have received relatively little 
attention. It is these implications, the new questions they raise, and the role of self-
domestication in answering those questions that forms our focus here.

We start by considering the kind of questions we might ask of biological evolu-
tion. Simply put, we see the process uncovered by work on the cultural transmission 
of language as a kind of ‘informational regularity’, akin to the regularities afforded 
the evolutionary process by the laws of physics and mathematics (e.g. Kauffman 
1993; Goodwin 1994; Stewart 1998). Such regularities have the common feature of 
providing structure ‘for free’. Given this, it makes little sense—and indeed renders it 
unnecessary—to seek a biological explanation for language structure itself. Instead, 
the core question for biological evolution should be the origin of the key precursors 
that make the cultural evolution of language possible in the first place.

As a first approximation, we suggest that the emergence of structured language 
through cultural evolution required two key precursors. The first is that communi-
cative signals need to be learned from others, rather than being present from birth. 
Cultural evolution can only occur if something is learned, transmitted between 
generations, and changes in response to that transmission. The second is that this 
learning needs to be guided by a sensitivity to the communicative intent of others. 
Guided, that is, by the ability to recognise when another individual’s movement, 
gesture or sound was made in order to communicate, and what it was intended to 
mean.

In addressing the origin of these precursors, we turn to the resources of com-
parative biology. In particular, we looked for evolutionary analogies (Gould 1976): 



1 3

Self domestication and the evolution of language  Page 3 of 30  9 

Instances of similar traits emerging in other, distantly related species, through a pro-
cess of parallel evolution. We identify two species, each of which exhibits aspects of 
one of the two precursors. In both cases, these instances of parallel evolution seem 
to be linked to the domestication of the species. The first of these species is the 
Bengalese finch (e.g. Okanoya 2012), which following domestication has come to 
rely much more on learning to transmit its song between generations, thus serving 
as a parallel for the first precursor. The second is the domestic dog (e.g. Hare et al. 
2002), which exhibits a particularly acute awareness of when actions or gestures are 
meant communicatively, thus paralleling the second precursor.

This leads to the question of whether domestication might also explain the emer-
gence of these precursors in humans. The idea that humans are a domesticated spe-
cies has deep intellectual roots, tracing back at least to classical antiquity (Leach 
2007). In the second half of this paper, we present an overview of the concepts, 
evolutionary processes, and outcomes associated with domestication, together with 
their applicability to the human case. Central to this discussion is the notion of the 
domestic phenotype: a suite of skeletal, dental, soft tissue, behavioural, and repro-
ductive changes that are common to a wide range of domesticated species. There is 
now much evidence that humans also exhibit the domestic phenotype.

In summary, we argue that recent work on the cultural evolution of language ren-
ders a biological account of language structure unnecessary. Rather than seek a bio-
logical account of the emergence of language structure itself, we think the focus 
should be on the biological underpinnings of the cultural process. A survey of some 
relevant comparative studies suggest that the conditions typical of domestication 
may play a key role in accounting for how such a cultural process may have man-
aged to get started. Linking this with the growing interest in the role of domestica-
tion in human evolution, we suggest that the biological precursors of structure-creat-
ing cultural evolution lie in an earlier process of self-domestication.

The cultural evolution of language

In the late 1990s, a number of researchers began to model the ways in which lan-
guages evolve culturally in response to being transmitted through multiple genera-
tions of individuals, each of which learned the system through the observation of a 
subset of other individuals’ signalling behaviour (see Kirby et al. 2014; Smith 2014 
for reviews). That the learners only observe a subset of the signalling behaviour of 
the previous generation is key, as this creates a bottleneck on the transmission pro-
cess. In a typical computational simulation of this process, the initial generation of 
learners were trained on a set of non-compositional, random signal-meaning asso-
ciations. Those same individuals then went on to produce signals themselves, which 
then served as the input to the next generation of learners, and so on. This is the 
core of what is meant by the term ‘iterated learning’. The central question, then, 
concerned the kinds of language that can survive in a world in which learners are 
only ever exposed to a subset of a language’s constituent signal-meaning pairs. The 
core finding of this work was that random languages become compositional over the 
course of the simulations. Compositional languages survive transmission through 
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the bottleneck, whereas random languages do not, because they are simpler, or more 
compressible (Brighton 2003), and thus easier to learn.

However, this modelling work was vulnerable to two main criticisms. The first 
was that the apparently emergent structure simply reflected the learning algorithms 
built into the agents, rather than anything about the transmission process itself. To 
what extent, then, is there an effect of cultural transmission, over and above that of 
the influence of the learning biases or algorithms of the learners? The second con-
cerns the applicability of these findings to the real world. To what extent would the 
results of these simulations be mirrored in work done with human beings?

The first criticism was addressed through the application of Bayesian techniques 
(Griffiths and Kalish 2007; Kirby et al. 2007). The key contribution of the Bayes-
ian approach lies in the concept of the prior, and its ability to make learning biases 
explicit. This allows us to see what contribution iterated transmission is making, 
if any, over and above that of individual biases. A crucial finding of this Bayes-
ian work is that there are a range of conditions under which cultural transmission 
has the effect of amplifying learning biases. More specifically, as long as learners 
possess some kind of bias for structure, however weak that bias might be, cultural 
transmission can serve to amplify the effect of that bias, such that the resulting lan-
guage is highly structured (Smith and Kirby 2008). Another way to think about this 
is in terms of the strength of the bias being masked (Deacon 2009) by the pres-
ence of cultural transmission. As a result, a highly structured language will emerge 
over the course of repeated transmission, regardless of whether the individual agents 
have a weak or strong bias for structure. In turn, this sets up an evolutionary pro-
cess whereby the weakest possible bias in favour of structure is likely to be favoured 
(Thompson et al. 2016).

The second criticism was addressed through the expansion of iterated learning 
to experimental studies in the lab (Scott-Phillips and Kirby 2010; Tamariz 2017). 
The aim of these studies is to replicate the logic of the simulations as closely as pos-
sible with real participants. They can be seen, then, as a combination of the kind of 
artificial language learning experiments seen in psycholinguistics (e.g. Reber 1967) 
with the diffusion chain paradigm from experimental cultural evolution (e.g. Mes-
oudi and Whiten 2008). In one of the earlier of these studies, Kirby et  al. (2008) 
trained participants on an artificial language for naming coloured shapes. The initial 
language consisted of an entirely random set of signal-meaning pairs. Having been 
trained on half the language—an effective ‘bottleneck’ on transmission—these first 
participants were then asked to label the full set of shapes, forcing them to recall 
what they had been trained on and to generalise to the whole set. The output from 
this first set of participants was then used as the training language for the next set of 
participants, with this process being repeated for each generation.

Intriguingly, the key insight from this early experimental work was that its 
results did not match those of the simulation studies. As the language was trans-
mitted between generations of participants it did indeed become simpler and 
easier to learn. However, it did so by becoming a degenerate, or systematically 
underspecified, language, in which a single signal was associated with multiple 
meanings. Becoming easier to learn through the simple shedding of distinct sig-
nals is clearly an adaptation to passing through the bottleneck. However, it is not 
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a realistic account of the emergence of the kind of structured language we see 
in the world. This discrepancy between the experimental and simulation studies 
is resolved, however, if participants are placed in an interactive context (Kirby 
et al. 2015; Winters et al. 2015). The need to be used for communication intro-
duces a second pressure into the environment of the language, with the result 
that languages again became compositional over the course of transmission.

The collective findings of the last two decades work on the cultural evolution 
of language lead us, then, to identify two key pressures in the environment of the 
language (Kirby et al. 2015; see also Kemp and Regier 2012). The first is that 
language must be learnable. If a language is too complex or difficult to learn, 
then it will simply not get passed on with any fidelity. This is a pressure, then, 
for ever greater simplicity (Brighton 2003; Brighton et  al. 2005). Against this 
pressure to simplify, however, lies the fact that language is used to communicate. 
Language must be expressive enough to be useful for communication. There is, 
then, an inevitable trade-off in the form a culturally transmitted language comes 
to take. The simplest possible language would be one in which a single signal 
was associated with every meaning, however this would be of little use in com-
munication. Conversely, a language with a unique and unrelated signal for every 
meaning would permit totally unambiguous communication but be near impossi-
ble to learn. Cultural evolution shapes language structure in response to just this 
trade-off. The process of cultural transmission, with its interplay between the 
pressure to simplify and the pressure to have communicative utility, generates a 
compositional language, which is structured to meet both pressures.

This, then, is what we mean when we say that cultural evolution presents as 
a kind of ‘informational regularity’. The very process of transmission, whether 
implemented in simulations or in human participants, promotes the structur-
ing of the transmitted system and serves to amplify any biases for structure that 
may be present in learners. Initially random systems of signals, then, become 
structured simply by virtue of being culturally transmitted, without any need for 
a concomitant change in the learners who use the system. It is this sense that 
structure is provided ‘for free’ to biological evolution. In short, structured sys-
tems survive because they are easier to learn. However, as experimental work 
has shown, the kind of structure that results from cultural transmission is not 
necessarily the kind of structure we see in language. Recall, for example, how 
under certain circumstances the transmitted system can become systematically 
underspecified. The compositional structure we see in language is, then, a result 
of this process of cultural transmission occurring in a context where the learners 
use the system to communicate. Compositional structure is what results when a 
pressure for communicative utility is added to a process, cultural transmission, 
that is itself already structure-creating in nature. This renders an account of lan-
guage structure rooted in biological evolution unnecessary. Instead, we argue 
that we should look to biological evolution to provide an account of how this 
cultural process became possible in the first place.
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The biological precursors of a culturally evolving language

The learning of new signals

For structure to emerge through cultural evolution, it is necessary that the system be 
learned from others. However, the communication systems of most species are not 
transmitted in this way. The pattern across mammals, at least as far as vocal com-
munication is concerned, is that most species have a limited repertoire of signals 
which are present in their adult form from birth (Seyfarth and Cheney 2010). We 
should be clear here, however, about what we mean by ‘learning’. When we talk 
about learning we are specifically talking about production learning (Seyfarth and 
Cheney 2010), where an existing signal is modified or a new signal is acquired. This 
stands in contrast to comprehension learning, which refers to the ability to extract a 
new meaning or inference from a signal; and usage learning, where the usage of a 
signal is modified based on the current situation or context (Janik and Slater 2000; 
Seyfarth and Cheney 2010).

There are, of course, examples of production learning found in nature. Among 
mammals, known vocal learners include some species of whales and dolphins (Reiss 
and McCowan 1993; Rendell and Whitehead 2001), bats (Boughman 1998), seals 
(Ralls et al. 1985), and elephants (Poole et al. 2005). We have no doubt that many 
further examples of mammalian vocal learning will be discovered in the future. 
Among birds, production learning is found in both parrots (Pepperberg 2010) and 
hummingbirds (Baptista and Schuchmann 1990). Of course, the most unequivocal 
evidence of vocal production learning is found in songbirds (Nottebohm and Liu 
2010), many species of which require exposure to other singers during development 
in order to develop species-typical song (Beecher et al. 2010). The importance and 
widespread nature of learning in songbirds makes them a particularly good ‘natural 
laboratory’ for the question of how and why a central role for learning might have 
emerged in relation to language.

While communication through vocal signals is widespread in nature, communi-
cation through gesture—that is, through “manual communication without touching 
another individual or a substrate”—is found almost exclusively in apes and humans 
(Pollick and de Waal 2007: 8184). The gestural communication of apes is signifi-
cantly more flexible and less tied to emotional reactions or specific contexts than 
either their vocal or facial expressions (Pollick and de Waal 2007). The compre-
hension and usage of ape gestures in the wild is known to shift between contexts 
(Hobaiter and Byrne 2011), and the emergence of new, non species-typical gestures 
has been observed in captivity (Leavens et al. 2005). Of course, gesture, although 
learned, is not the predominant modality of language as we know it today. This, 
amongst other things, has lead some to suggest that language may have originated 
in the gestural modality, only later becoming primarily vocal (e.g. Corballis 2002). 
In contrast, others have suggested that it is not so much that language itself switched 
modality, but that the same underlying cognitive capabilities that permit the flex-
ibility of learned gesture in apes may have been extended to the vocal domain (e.g. 
Tomasello 2008).



1 3

Self domestication and the evolution of language  Page 7 of 30  9 

Communicative inference: linking signals to meanings

However, vocal production learning is not itself enough. What is required for 
language is the production learning of new signal-meaning associations. There 
seems little evidence that any of the vocal production learners discussed above 
are learning new signal-meaning associations, or even that their signals have any 
semantic content at all (Fitch 2005). Even in one of the clearest examples of vocal 
production learning, that of the songbirds, there appears to be no evidence that 
there is any semanticity to the learned song, or that song elements can be rear-
ranged to yield changes in meaning (Berwick et  al. 2011). There are, however, 
some instances of signal-meaning associations being learned in apes. Learning 
of this kind can be seen in the process of ontogenetic ritualisation (Tomasello 
1996), in which signal-meaning associations are constructed through repeated 
interactions. It can also be seen in ape language research (Savage-Rumbaugh 
et al. 1986, 1998, 2005; Lyn 2007), in the form of learned lexigrams and gestures.

Language is unusual, however, because it is both learned and symbolic (Dea-
con 1997). As such, the link between signals and their meanings is neither 
innately specified nor inherent in the form of the signal (Oliphant 2002). This 
greatly complicates the task of acquiring new signal-meaning pairs, because it 
requires not just associative learning between items, but also some way of fig-
uring out what words actually mean. To learn a new signal-meaning pair in a 
language-like system, then, requires the capacity to infer what a communicator 
intended the signal to mean.

In language, the inferential acquisition of new signal-meaning pairs is most 
clearly exemplified by word learning. Many different processes are likely involved 
in word learning (Markman 1994; Samuelson and Smith 1998; Saffran 2003; Smith 
et al. 2011). However, it is the social-pragmatic account (e.g. Tomasello 2000) that 
has the most to say about the problem of meaning inference. This account is rooted 
in our awareness of others as intentional agents (Tomasello 1999), and our capacity 
to engage in joint-attentional activities (Tomasello et al. 2005), against a background 
of mutually shared knowledge, expectations and goals. This background, often 
referred to as ‘common ground’ (Clark 1996) or in terms of a ‘mutual cognitive 
environment’ (Sperber and Wilson 1995), creates a situation in which the range of 
potential referents for a given utterance is drastically reduced. In summary, then, our 
second precursor is not simply the production learning of new signal-meaning asso-
ciations, but the ability to acquire these associations through an inference of com-
municative intent.

However, there is an even more basic form of this precursor, which stands as a 
requirement for any account of learned symbols to be possible in the first place. This 
concerns the recognition that an action or behaviour was meant communicatively at 
all (Scott-Phillips et al. 2009). In contrast to inferring the meaning of a particular 
signal, we might call this a general sensitivity to communicative intent: an aware-
ness, that is, that a particular signal or action was made in order to communicate. 
Given that the full suite of capacities underpinning joint-attentional situations and 
the inference of communicative intent are likely unique to humans, we think it more 
promising to focus on this more basic form of the precursor.
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The origin of the precursors in domestication

In the following sections, we discuss two comparative studies, which each present 
as evolutionary analogies of one of the two preconditions for a structure-creating 
process of cultural evolution. In each of the two examples, the parallel evolution of 
these key precursor traits occurred in the context of domestication. We explore what 
it is about domestication that likely lead to this outcome.

The Bengalese finch and the learning of signals

The Bengalese finch is a domesticated strain of the white-rumped munia (Okanoya 
2002), a bird native to tropical continental Asia and some of the surrounding islands. 
For the last 250 years the Bengalese finch has been bred in Japan for its white plum-
age (Okanoya 2004; Svanberg 2008). Importantly, the Bengalese finch has not been 
bred for its song. Despite this, the song of the Bengalese finch has changed remark-
ably over the course of its domestication. It is the nature of these changes, together 
with the reasons why domestication had this kind of effect on its song, that makes 
this bird significant for those interested in the cultural evolution of language.

The role played by learning in songbirds differs along a number of dimensions 
(Beecher and Burt 2004; Beecher and Brenowitz 2005; Beecher et al. 2010; Soma 
2011). As such, the changes to the Bengalese song brought about through domesti-
cation are best appreciated against a backdrop of the similarities between the Ben-
galese finch and its wild ancestor. Firstly, both the wild and domesticated species 
are closed learners (Okanoya and Yamaguchi 1997; Soma et  al. 2006), meaning 
they can only acquire their species-typical song during a developmental ‘sensitive 
period’. Secondly, both species require exposure to conspecific song during devel-
opment (Bao et al. 2003; Peng et al. 2012). Species-typical song will not develop 
if they are reared in isolation, as it can in some species (e.g. Kroodsma et al. 1997; 
Leitner et al. 2002). Finally, both the wild and domesticated strains are ‘social learn-
ers’, who learn better from conspecifics than from prerecorded ‘tape tutors’ (Eales 
1989; Soma 2011).

Both species, then, are vocal learners. Domestication has not turned a non-learner 
into a vocal learner. What has changed, however, is the role and importance of learn-
ing—specifically, learning from others—to the transmission of the song between 
generations. This can be seen in three further dimensions along which the wild and 
domesticated strains differ. Firstly, the domesticated Bengalese now sings a much 
more complex and syntactically rich song, with greater levels of unpredictability in 
the patterns of transition between notes and note groups than is seen in the wild 
munia (Okanoya 2002, 2012). Secondly, cross-fostering experiments (Takahasi and 
Okanoya 2010) have shown that Bengalese chicks exhibit much lower copying fidel-
ity in what they learn from tutor birds. Whereas munia chicks copy tutors with a high 
level of fidelity, Bengalese chicks combine the tutor’s song with their own improvi-
sations and variations. Finally, and most importantly, Bengalese finches are much 
less constrained in what they are able to learn. Song learning in the white-rumped 
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munia is highly canalized, such that munia chicks are only able to acquire a nar-
row range of species-specific song. In contrast, Bengalese chicks are much less con-
strained in what they are able to learn (Takahasi and Okanoya 2010).

Three important points follow from these differences. The first is that the reduc-
tion in learning constraints seen in the Bengalese finch means that the specifics of 
experience during development (e.g. particular tutor used as model) have a much 
greater influence on the structure of the resulting song. The second is that the reduc-
tion in high-fidelity copying combined with the broader range of what Bengalese 
chicks will copy has resulted in a much greater variation in song between different 
finches than is seen in their munia ancestors. Finally, all three of these differences 
combined have meant that many Bengalese finches have come to sing songs of much 
greater complexity than seen in white-rumped munias.

In the wild-living white-rumped munia, we have an example of a stereotypic, 
highly canalized communication system in which learning plays a minimal role. In 
its domesticated descendent, the Bengalese finch, song learning is less canalized, 
the songs themselves are less stereotypic and the influence of traditional transmis-
sion on song structure has increased. We see in this example, then, a parallel with 
the first of the preconditions identified above: an increase in the role of learning and 
cultural transmission. This change occurred in the context of domestication. Recall, 
however, that despite this context it cannot be attributed to artificial selection for 
more complex song. Why, then, might domestication have changed this bird’s song 
in this way?

One of the major characteristics of domestication is the buffered nature of the 
environment (Zohary et al. 1998; Price 1999, 2002; Deacon 2010), in which organ-
isms are no longer subject to many of the selective pressures typically found in the 
wild, such as predation, unpredictable variation in food supply, and climatic varia-
tion. Deacon (2003, 2009, 2010) has proposed that domestication operated to relax 
various selection pressures on munia song that had kept it simple and stereotypical 
in the wild, allowing the song to become more complex under domestication (see 
also, Ritchie and Kirby 2007). This relaxation of selective pressure, argues Deacon, 
resulted in a breakdown of the learning biases and other factors that had kept the 
song simple in the wild and served to restrict the potential role for learning in shap-
ing song characteristics. In turn, this opened up the possibility for learning and other 
aspects of early experience to influence song structure much more greatly under 
domestication. It is important to note that this is not the relaxation of selective pres-
sure, per se, such that no selection occurs, but of specific pressures that served to 
restrict the potential contribution of learning and individual experience to the result-
ing song.

One such pressure concerns the need for accurate species recognition. Kagawa 
et al. (2012) compared the songs of three wild populations of white-rumped munia 
on the island of Taiwan. The syntactic complexity of munia song was found to 
vary in relation to the number of sympatric, closely related species. One of the key 
functions of song is species recognition, which is important in order to avoid the 
infertile hybrids that often result from cross-species matings. This is best achieved 
through the use of simple, stereotypic songs that exhibit little variation. In locations 
with fewer sympatric close relations, however, the selective pressure on species 
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recognition is relaxed. The greater song complexity found in areas with fewer sym-
patric species could well be another example of song complexification following a 
relaxation of selective pressure. Kagawa et al. have, then, identified a key selection 
pressure that is both relaxed under domestication and found to be related to song 
complexity in the wild.

The second strand of evidence relates to the differing levels of stress hormones 
found in white-rumped munia and Bengalese finches. Suzuki et  al. (2012) report 
measurements of fecal corticosterone, a hormone known to be directly involved in 
the development of the song system (Suzuki et  al. 2011). Bengalese finches were 
found to have lower levels of corticosterone than white-rumped munia, regardless 
of whether the munia had been wild-caught or captive raised, indicating that it is 
domestication of the lineage that matters and not simply the conditions in which 
an individual bird was raised. Indeed, changes in hormonal regulation are known 
to commonly follow from domestication more generally (Price 2002; Trut et  al. 
2009). A range of work shows that higher levels of corticosterone negatively affect 
the development of the song system and can reduce the complexity of the resulting 
song (Spencer et al. 2003; Buchanan et al. 2004). If this is the case, then the finding 
that domestication can reduce levels of corticosterone in finches—perhaps through 
consistently reduced levels of stress in a buffered environment—might well provide 
a physical mechanism whereby the relaxation of selection following domestication 
could induce song complexification.

Finally, it is also clear that both female Bengalese finches and female munias have 
a preference for more complex song (Okanoya 2002). The potential role of sexual 
selection is somewhat attenuated by the fact that Bengalese breeding has long been 
under human control, although there is still scope for sexual selection to influence 
song structure through the higher ‘breeding efficiency’ of bird pairs in which the 
male sings a more complex song (Okanoya 2004). The precise nature of the inter-
play between relaxed selection and female preference remains unclear. It may be as 
simple as the two factors acting to reinforce one another. Of course, we can ask why 
such female preference for complexity should be satisfied through complexity that 
is learned, rather than, say, the impressive improvisation seen in some other species 
(e.g. Leitner et al. 2002), either of which would fit equally well with the major selec-
tive theory of song complexity in birds, the developmental stress theory (Nowicki 
et  al. 1998; Buchanan et  al. 2004; Ritchie et  al. 2008). One possibility is that the 
environment of domestication, having already relaxed selection on song simplic-
ity, and thus facilitated a greater role for learning in song transmission, set up just 
the conditions for a demonstration of fitness through learning rather than through 
improvisation or other means (Thomas 2013).

The domestic dog and communicative inference

Starting in the late 1990s a number of studies appeared describing how domestic 
dogs were particularly adept at using human communicative cues, such as pointing 
(Hare et  al. 1998; Soproni et  al. 2001), gaze (Hare et  al. 2002), location markers 
(Agnetta et al. 2000), and even 3D replicas and photographs (Kaminski et al. 2009). 
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Of particular interest was the fact that dogs seemed to outperform chimpanzees 
and other apes (Hare et al. 2002; Hare and Tomasello 2005; Gómez 2005; Miklósi 
2007), and indeed seemed more similar to human children in this respect, although 
the true capacity of apes in this is a matter of debate (see Mulcahy and Call 2009; 
Mulcahy and Hedge 2012; Kirchhofer et al. 2012). Furthermore, these abilities are 
found across a wide range of different breeds (Wobber et al. 2009), including breeds 
that had been bred as working dogs like retrievers, companion dogs like toy poodles, 
and even once-domestic but now-feral breeds like the Australian dingo (Smith and 
Litchfield 2010).

These studies all utilised a variant of the object choice task (see Miklósi and 
Soproni 2006). In this procedure, a piece of food or other desirable item is placed in 
one of two or more locations. The location of the food is then indicated to the sub-
ject through pointing or some other cue, and the subject is then allowed to choose 
between the locations. The question of interest is whether the subject can use the 
cue to select the correct location. More specifically, however, what matters is not 
the ability to respond to the cues per se, but the extent to which a comprehension of 
the communicative nature of the cues is necessary for success on the task. It is quite 
possible, for example, to be successful with some cues, such as location tapping or 
sustained, close-in pointing, purely as a result of stimulus enhancement. Other cues, 
however, such as iconic representations and brief points from more distant loca-
tions, are much less salient in this regard. Finally, such comprehension is even more 
strongly confirmed if responses are modified based on the ostensive content of those 
cues. For example, by responding differently to intentionally given communications 
than to very similar physical actions produced ‘by accident’.

Studies with wolves and young puppies suggest that this ability in dogs is neither 
a simple inheritance from the canid line more generally, nor dependent on exposure 
to humans during development. Miklósi et al. (2003) compared dogs and wolves that 
had been socialised with humans to a comparable level. They found that dogs sig-
nificantly outperformed wolves on the object choice task. Virányi et al. (2008) con-
ducted a longitudinal study with sets of hand-reared wolves and dogs. When tested 
at a young age, the dogs significantly outperformed the wolves despite similar levels 
of exposure to humans. They then went on to re-test the wolves at regular intervals. 
The wolves performance steadily increased with each re-testing, such that eventually 
the best subset of these highly trained wolves reached a comparable level of perfor-
mance with naive dogs, who had not previously been tested. Echoing Virányi et al’s 
findings, Riedel et al. (2008) found a similar level of performance across dogs of all 
ages, including puppies as young as 6 weeks old.

We should note, however, that others have disputed the claims of dogs’ superi-
ority to wolves and the presence of the capacity in young dogs (Udell et al. 2008; 
Wynne et  al. 2008). This has lead to the suggestion of the so-called ‘two-stage 
hypothesis’, which suggests that dogs’ abilities stem from a combination of an initial 
exposure to humans during their early socialisation period, followed by extended 
reinforcement learning over the course of life (Udell et  al. 2010). This, then, is 
something of a domain-general account of how these abilities emerged, in contrast 
to the more domain-specific account rooted in domestication. However, a range 
of further evidence suggests that the abilities found in dogs go well beyond what 
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could reasonably be accounted for through a domain-general effect of reinforcement 
learning.

The most significant of these further findings concerns a number of parallels 
between dogs and human infants in their response to communicative cues. Firstly, 
like human infants, but unlike other apes (Hare and Tomasello 2004; Herrmann 
et al. 2006), dogs appear to show a particular sensitivity to cues in co-operative con-
texts (Pettersson et al. 2011), rather than in competitive situations. Secondly, dogs, 
again like human infants, show a particular sensitivity to the ostensive content of 
signals and cues (Kaminski et  al. 2012). Dogs respond differently to intentionally 
given cues, than to similar actions produced ‘accidentally’, and show sensitivity to 
a range of ostensive cues, such as establishing eye contact and calling their name. 
Finally, dogs even exhibit some similar errors to those seen in human infants in 
interpreting communicative cues (Topál et al. 2008, 2009), including the so-called 
A-not-B error related to object permanence.

We should pause here to note that these abilities have been investigated in a num-
ber of species other than dogs, including dolphins (Pack and Herman 2004, 2006, 
2007), seals (Shapiro et al. 2003; Scheumann and Call 2004), horses (Proops et al. 
2010), and goats (Kaminski et al. 2005). Studies have also been conducted with a 
number of bird species including parrots (Giret et  al. 2009), and numerous kinds 
of corvids (e.g. Schloegl et al. 2008; Tornick et al. 2011). In many cases the results 
can be explained in terms of stimulus enhancement, with levels of correct response 
correlating to the saliency of the cue used. However, in some cases, particularly 
dolphins and seals, there does indeed seem to be some genuine understanding of 
the communicative nature of the cues. However, much like with socialised wolves, 
these more impressive cases typically involve individuals who have had intensive, 
long-term contact with humans, often participating in research programs, demon-
strations or shows for many years. In addition, there have been a number of stud-
ies of other domesticated species, including cats, horses and goats (see Miklósi and 
Soproni 2006; Thomas 2013 for reviews), which have returned somewhat inconclu-
sive results.

Having an evolutionary history of domestication is not, then, a necessary condi-
tion for the sophisticated utilisation of human communicative cues. However, there 
may be multiple routes, each comprised of different proportions of phylogenetic and 
ontogenetic contributions, that can lead to similar phenotypic outcomes (Miklósi 
and Topál 2011). Broadly speaking, the ontogenetic route, taken by dolphins, seals 
and intensively socialised wolves, consists of long-term exposure to humans. In con-
trast, the phylogenetic route, seemingly taken by the dog over the course of domes-
tication, means it requires little or no exposure to humans for comparable capaci-
ties to become manifest (Miklósi and Topál 2011). We are left, then, with much the 
same question as followed from the case of the Bengalese finch: what is it about 
the process of domestication that caused this change in dogs? Fortunately, however, 
there is a long-running experiment, expressly designed to investigate the domestica-
tion of the dog.

The farm fox experiment (Belyaev 1979; Trut 1999; Trut et al 2009) was started 
in 1959 by the Russian geneticist Dmitry K. Belyaev. The experiment took the Sibe-
rian silver fox—a regional variant of the more familiar red fox—as its model animal, 



1 3

Self domestication and the evolution of language  Page 13 of 30  9 

and began a selective breeding program, still running today, to recreate the domes-
tication of the dog, and to investigate the origins of the physical and behavioural 
characteristics typical of domesticated species. At the core of the experiment is the 
breeding of three lines of foxes, tame, aggressive, and a control group. For reasons 
of clarity and space we will focus on the tame-line foxes.

Selection in the tame-line foxes was solely based on their temperament, as 
assessed through their reactions to humans (Kukekova et  al. 2006, 2008, 2012). 
Foxes were then classified into groups based on their overall aggressive behaviour, 
with the tamest, least aggressive foxes known as the ‘domesticated elite’. The selec-
tive pressure applied to the tame line of foxes was very strong, with only the top 
10% of most tame individuals being allowed to breed (Trut et al. 2009). Unsurpris-
ingly, this rapidly increased the percentage of foxes classified as ‘domesticated elite’, 
from 1 to 2% at the beginning of the experiment to almost the entire population after 
fifty or so generations (Trut et al 2009).

What is perhaps more surprising, however, was the range of other changes that 
also occurred in the tame line of foxes, as listed in Table 1 (after Trut 1999; Kuke-
kova et al. 2006; Trut et al. 2009; Bidau 2009). 

The most striking thing about this list is how many of these changes are typically 
found in domesticated species (Price 1999), forming part of the domestic phenotype. 
One remarkable finding of the farm fox experiment, then, is that many of these typi-
cal outcomes of domestication can be produced simply as a by-product of selection 
against aggression. For present purposes, however, the most important change that 
occurred in the tame line of foxes was that, like domestic dogs, they also came to 
exhibit a sensitivity to communicative intent.

Hare et  al. (2005) conducted an object-choice task, similar to those described 
above, comparing the abilities of dog pups, tame-line domesticated fox kits and con-
trol fox kits. The three groups were tested on their ability to use a point-and-gaze 
cue to select the correct location of some hidden food. The two major findings were 
that tame-line fox kits performed as well as dog puppies, and that the tame-line kits 
outperformed kits of the control population. There was also no evidence of learning 
during the experiment, as the tame-line kits performed as well in the initial trials as 
in later ones.

Temperament is the only criteria on which these foxes were selected. The fact 
that the sensitivity to communicative intent has emerged in the tame fox line lends 
support, therefore, to the emotional reactivity hypothesis (Hare et  al. 2005; Hare 

Table 1  Correlated phenotypic changes following selection on temperament

Earlier response to sound Piebald coat
Eyes opened earlier Brown mottling on coat
Delayed development of fear response Floppy ears
Extended socialisation period Shortened tails
Play extended into adulthood Curly tails
Earlier sexual maturity Smaller cranial height and width
Breakdown of strict mating seasons Decrease in sexual dimorphism
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and Tomasello 2005; Melis et  al. 2006). This is the view that cognitive changes, 
particularly those involving co-operative behaviour, may not always requires direct 
selection, but can appear as a by-product of selection acting on systems of emo-
tion or aggression that had previously prevented the use of preexisting skills in these 
kinds of co-operative contexts. This speaks directly to the question of why and how 
domestication might have resulted in this ability emerging in dogs. The answer aris-
ing from the farm-fox experiment is that such capacities are likely to have emerged 
as a by-product of selection targeting defensive and aggressive behaviours.

Bridging the ‘gap’ to humans

In the Bengalese finch, relaxed selection, changes in the regulation of stress hor-
mones, and female preferences have combined to expand the role played by learning. 
This provides a parallel to the first of our precursor traits, regarding the importance 
of learning in the transmission of a communication system. Recall that learning 
plays little role in the transmission of most species’ communication systems. The 
Bengalese finch provides us with a documented case study of how learning might 
take on a greater role. In the domestic dog, selection on temperament has enabled 
the emergence of a particularly acute sensitivity to communicative cues. This serves 
as a parallel to our second precursor trait, that the kind of learning required for a sys-
tem like language is one that is fundamentally rooted in communicative inference. 
Of course, neither the Bengalese finch nor the domestic dog provide a full analog 
to their respective traits in humans. It is, after all, no surprise that the full depth and 
complexity of language learning and human social cognition would not be present 
in other species. However, in both instances we see the parallel evolution of the core 
elements of the two precursor traits which we identify as underpinning the cultural 
evolution of language structure. We think the fact that both these instances of paral-
lel evolution occurred in the context of domestication provides an important clue as 
to how these key precursor traits might have evolved in humans.

However, we also acknowledge that there remains a significant explanatory “gap” 
between humans and language on the one hand, and the two case studies of domes-
tication on the other. If we were to be critical of our argument so far, we might 
put it somewhat like this. What we have is two “pieces” that appear to fit together: 
the preconditions required for a structure-creating process of cultural transmission, 
and the two case studies of domestication in which parallels to those preconditions 
can be seen emerging. What remains to be demonstrated is whether, and even how, 
these two pieces might be part of the same “puzzle”. Several questions naturally 
arise here. What is ‘domestication’? What has domestication got to do with human 
evolution? How could domestication-like changes have occurred in humans?

What is domestication and why is it relevant to humans?

Why we should even consider the possibility of domestication having played a 
role in human evolution? After all, does not domestication require that there be a 
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domesticator—an outside agency selectively breeding the species? In this section 
we contrast two conceptions of domestication (see Thomas 2013). (1) The condi-
tions view, in which domestication is characterised in terms of being under the con-
trol of another species. (2) The outcomes view, in which domestication is character-
ised by the typical traits that are shared by many domesticated species, known as the 
domestic phenotype.

The conditions view of domestication

The view of domestication held by many people is probably well captured by the 
following quote:

[a domestic animal is] bred in captivity for the purposes of subsistence or 
profit, in a human community that controls its breeding, its organisation of ter-
ritory and its food supply.
(Clutton-Brock 1992: 41, our emphasis)

As the emphasis makes clear, this view focuses on domestication as the human 
‘mastery’ of nature, through the control of other species, by humans, for our own 
conscious purposes. To an extent, of course, this description of domestication is 
accurate. However, it also brings with it a number of problems.

For one, while it is an accurate description of the current-day living conditions of 
many domesticated species, it is an entirely insufficient account of how those spe-
cies came to take on their present-day characteristics. This is because many aspects 
of the domestic phenotype can be traced not to selective breeding but to continu-
ing natural selection under domestication (Price and King 1968; Price 1999). The 
environment of domestication is characterised by reduced living space, increased 
predictability of food and water supply, dietary changes, an altered social structure, 
and greater availability of shelter from the elements, resulting in profound changes 
to an organism’s microclimate (Price and King 1968; Carlstead 1996; Price 1999). 
Against this backdrop, major evolutionary changes should be expected even in the 
total absence any artificial selection. A range of domestication-typical changes in 
mammals, birds, and fish have been associated to some degree with natural selection 
under domestication. These include reductions in body size (Tchernov and Horwitz 
1991); reductions in cranial and skeletal robusticity (Zohary et al. 1998; Houde et al. 
2010); reduced sexual dimorphism (Polák and Frynta 2009, 2010); reduced brain 
size (Kruska 2005); the breakdown of seasonal breeding patterns (Price 1999; Tch-
ernov and Horwitz 1991); and changes in temperament, environmental reactivity, 
and predator vigilance (Håkansson and Jensen 2008; Campler et al. 2009).

In addition, the conditions view of domestication has the tendency to make us 
view it as a unitary process. Historically, however, there have been a number of 
‘pathways’ to domestication (Zeder 2012). These are as varied as the prey pathway 
where a previously hunted animal comes under direct human control, as was the 
case with sheep goats, and cattle; and the commensal pathway, where the process of 
domestication is initiated by the domesticated species itself in coming to live among 
humans, as was the case for dogs (Morey 1994). Finally, the systematic application 
of selective breeding is a recent development in the long history of domestication 
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(Leach 2007), which is measured in tens of millennia. All of this is not to say that 
artificial selection and selective breeding are unimportant. Rather, the point is that 
the domestic phenotype cannot be reduced to the product of selective breeding. 
It is the outcome of a range of evolutionary processes taking place against a par-
ticular environmental backdrop, much of which has long been shared by humans 
themselves.

The outcomes view of domestication

In contrast to the view described above, it is also possible to view domestication in 
terms of its typical evolutionary outcomes. It has long been known that many pheno-
typic similarities can be seen across a wide range of domesticated species (Darwin 
1868; Price and King 1968; Price 2002). This suite of phenotypic changes has come 
to be known as the domestic phenotype. The following tables list some of its main 
characteristics, and should be read in terms of how domesticated species typically 
differ from their wild equivalents (Tables 2, 3). The tables are based on overviews 
by Leach (2003), Price (1984, 1999, 2002), Clutton-Brock (1999) and Trut et  al. 
(2009).  

This view of domestication is, of course, not incompatible with the conditions 
view; however, a focus on the evolutionary outcomes of domestication has a number 
of advantages as as general ‘organising framework’ for thinking about domestica-
tion in general, and about the possibility of human self-domestication in particu-
lar. Firstly, by focusing on the outcomes of domestication it remains agnostic about 
the processes and pathways that lead to those outcomes. Secondly, it provides an 
objective set of criteria for assessing whether a given species is indeed ‘domesti-
cated’. Indeed, the domestic phenotype is used by archaeologists as diagnostic of 
domestication having occurred in the past (Zeder et al. 2006). Finally, it allows us 
to re-frame the question of human self-domestication in very concrete terms, and 
away from potentially unhelpful metaphorical formulations. Humans can be consid-
ered domesticated to the extent that they: (1) share in the domestic phenotype; and 
(2) that those phenotypic similarities have arisen in response to similar evolution-
ary circumstances and selective pressures, and are underpinned by similar biological 
mechanisms.

Table 2  Hard tissue changes in 
the domestic phenotype

Skeletal Cranial

Hard tissue changes
Reduction in body size Reduced cranial robusticity
Decreased skeletal robusticity Reduced brain size
Reduced sexual dimorphism Shortened facial region

Greater diversity size/shape horns
Reduced tooth size
Tooth crowding/malocclusion
Juvenile shape retained in adulthood
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The domestic phenotype in humans

The idea that humans are a ‘self-domesticated’ species has deep intellectual roots, 
tracing back at least to classical antiquity (Leach 2007). Over the centuries this view 
has picked up a number of unpleasant political associations (Brüne 2007). However, 
from a scientific perspective the main driver of the idea has been the observation 
that humans, too, share many aspects of the domestic phenotype. This observa-
tion can be seen in the writings of Charles Darwin (1871), the anthropologist Franz 
Boas (1938), and any number of more recent scholars who have compared aspects 
of human evolution to the outcomes of domestication (e.g. Ashley Montagu 1955; 
Gould 1977; Leach 2003, 2007; Hare and Tomasello 2005; Deacon 2009, 2010; 
Bednarik 2012). Unlike most domesticated species, modern humans have no liv-
ing ‘wild’ ancestor against which their phenotypic traits can be compared. As such, 
most of these observations compare the modern human phenotype with trends over 
the course of human evolution, as seen in the fossilised remains of human ancestors, 
or, where this is not possible, with their closest living relatives, the great apes.

Modern humans have shown a marked decrease in skeletal and cranial robustic-
ity over the last 100,000 years (Ruff et al. 1993; Lahr and Wright 1996; Leach 2003; 
Bednarik 2012). They have also seen a significant reduction in teeth size (Brace 
et  al. 1987), and in the occurrence of tooth-crowding and malocclusion (Larsson 
et al. 2005; Leach 2003). Compared both to extant great apes and to ancestral human 
species, modern humans exhibit a significant retention of juvenile characteristics 
into adulthood (Gould 1977; Shea 1989; Zollikofer and Ponce de León 2010). In 
recent years the evidence of neoteny in modern humans has expanded to include 
aspects of gene expression in the brain (Somel et al. 2009, 2012; Liu et al. 2012), 
and the timing of synaptogensis (Bufill et  al. 2011). Modern humans also exhibit 
very low levels of sexual dimorphism compared both to other apes (Plavcan 2012) 
and ancestral species of hominids (Harmon 2006; Gordon et al. 2008; Kimbel and 
Delezene 2009). Unlike other great ape species, human females do not have dis-
tinct ‘breeding seasons’, and thus exhibit a form of ‘extended sexuality’ (Rodrı́guez-
Gironés and Enquist 2001), notwithstanding differences in fertility and preferences 
across the oestrus cycle (Gangestad and Thornhill 2008). There are also early signs 
that humans may differ in temperament to the other great apes, in ways similar to 
domesticated species (Herrmann et  al. 2011). Finally, it seems that this suite of 
changes is linked, representing the systemic impact of an underlying mechanism 
(Trut et al. 2009; Bidau 2009; Wilkins et al. 2014). Evidence is now emerging for a 
similar links between features such as cranial robusticity, temperament, and neoteny 
in humans (e.g. Cieri et al. 2014).

Documenting the full range of these parallels, together with the nuances of the 
arguments over the validity of each one, is beyond the scope of what we can man-
age here, and the interested reader is referred to the references cited above, particu-
larly Leach (2003, 2007), together with the much fuller version of this discussion in 
Thomas (2013). We should also mention the one aspect of the domestic phenotype 
which humans certainly do not parallel: a reduction in brain size. Rather than see 
brain size reducing, the direction of human evolution has been towards an increase 
in brain size (Rightmire 2004), with any trends in the opposite direction linked to 
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a concomitant reduction in body size (Ruff et al. 1993). It may be that this is one 
trait where the difference between domestication and self-domestication is actually 
important, with humans, as both constructors and inhabitants of their environment, 
not subject to the same reduction in stimulation and opportunities for sensory explo-
ration (Price 2002) experienced by other species living in that environment (Leach 
2003).

How might humans have come to share in the domestic phenotype?

The fact that humans exhibit many aspects of the domestic phenotype is the primary 
reason why the idea of human self-domestication should be taken seriously. How-
ever, this still leaves open the question of how these parallels might have occurred. 
In this last section we provide a brief tour of several areas of research aiming to 
address this question. We first consider aspects of the selective environment that 
might account for these parallels, focusing on the role of adaptation to the human-
made environment and selection against aggression. We then review some evidence 
regarding the biological mechanisms underpinning the domestic phenotype.

The selective environment of domestication

As discussed above, many aspects of the domestic phenotype are linked to ongo-
ing natural selection in the human-made environment, with the dramatic changes 
in living space, food availability and type, microclimate, elemental shelter, etc. that 
such an environment introduces. What is less commonly recognised, however, is that 
it is humans themselves, as nature’s quintessential niche constructors (Odling-Smee 
et al. 2003), who have likely been affected most by this environment, given that they 
have lived in it longest of all. Indeed, as Leach (2003) notes, many of the expla-
nations for the domestication-typical changes seen in human beings, particularly 
in the last 50,000  years or so, point to aspects of this human-made environment, 
such as increasing sedentism and associated reductions in activity (Ruff et al. 1993), 
changes in climate and microclimate (Pearson 2000), and dietary shifts (Cohen and 
Armelagos 1984; Lieberman 1996). Similar changes in response to the human-made 
environment have also been observed in commensals—species who live with us 
but are not controlled by us—such as the house mouse (Tchernov 1984), and in the 
‘inadvertent domestication’ observed in captive breeding programs for endangered 
species (O’Regan and Kitchener 2005). Once it is recognised that many aspects of 
the domestic phenotype are associated with the adaptation to a human-made envi-
ronment, the idea that humans might share those ‘domesticated’ traits comes to be 
much easier to understand.

The second key factor is the role played by selection against aggression. One of 
the most important contributions of the farm fox experiment to our understanding of 
domestication is the extent to which the domestic phenotype can emerge through a 
‘correlated cascade’ of changes following selection on temperament. One question 
that arises from this is whether there are any examples of a similar set of changes 
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following natural selection in the wild. Hare et  al. (2012) present a range of evi-
dence suggesting that the bonobo is just such a case. Bonobos differ from chim-
panzees along a number of physical (Cramer 1977; Zihlman and Cramer 1978; Pil-
brow 2006), behavioural and temperamental (Hare et al. 2007; Hare and Kwetuenda 
2010) dimensions that closely parallel the differences between wild and domesti-
cated species. Hare et al. (2012) argue that these differences are ultimately rooted 
in aspects of the bonobo’s feeding ecology, which have had profound implications 
for the structuring of bonobo society, especially the favouring of greater co-opera-
tion and reduced levels of aggression. The bonobo, then, may be a wild analogue 
to the proof-of-concept findings of the farm-fox experiment. Furthermore, it may 
also serve as something of a template for how selection against aggression could be 
linked to the domestic phenotype in humans. In particular, a growing body of work 
is now citing changes in human feeding ecology, primarily our shifting to a cooked 
and processed diet (Wrangham et al. 1999; Wrangham and Conklin-Brittain 2003; 
Wrangham 2009), as a potential source of similar selective pressure in favour of co-
operation and reduced aggression. This possibility is clearly more speculative than 
the impact of the human-made environment. However, in the farm-fox experiment 
we have confirmation that this kind of selective regime can result in the domestic 
phenotype, and in the bonobo we have a close relative, for which there is good evi-
dence that a similar process, this time of natural selection, has had a similar pheno-
typic outcome.

The physical mechanisms underpinning domestication

We now turn to the mechanisms underpinning the domestic phenotype. However, 
before our brief review of work in this area, it is worth saying something about the 
criteria such a mechanism has to meet. The domestic phenotype has two key fea-
tures: the range of species in which it has been observed, and the seemingly dispa-
rate set of traits of which it is comprised. To account for the domestic phenotype, 
therefore, any proposed mechanism must be both highly conserved across species 
and capable of explaining how such an apparently unconnected set of traits so fre-
quently occur together. Follow-up studies on the mechanisms at work in the farm 
fox experiment has identified changes in the domesticated foxes’ neuroendocrine 
system as being of fundamental importance (Trut et al. 2009). In particular, a reduc-
tion in the production of glucocorticoids and other stress hormones, together with 
changes in the levels of neurotransmitters such as serotonin. The importance of the 
role played by the neuroendocrine system is also supported by work with the Benga-
lese finch (Suzuki et al. 2011, 2012), bonobos (Surbeck et al. 2012a, b), and domes-
ticated species more broadly (Price 2002).

This neuroendocrinal mechanism meets one of the two criteria: the systems 
involved are highly conserved across species (Bidau 2009). However, as others have 
noted (e.g. Wilkins et  al. 2014), it does less well against the second criteria: it is 
unclear how such neuroendocrinal changes account for the diverse range of traits 
that comprise the domestic phenotype. Wilkins et al. (2014) argue that this diverse 
set of traits, including the neuroendocrinal changes, are linked by shifts in the 
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development, migration, and interaction of Neural Crest Cells (NCC), a vertebrate-
specific class of the developmentally important stem cells. They review a wide range 
of clinical and experimental work which shows similarities between aspects of the 
domestic phenotype and the effects of genetic disorders, so-called neurocristopa-
thies, that affect the generation and function of NCC. Importantly, Wilkins et al. dis-
tinguish between NCC as the shared developmental basis linking the various traits 
of the domestic phenotype and their emergence over ontogeny, and the polygenic 
nature of the underlying genetic explanation. This allows them to present a unified 
account of the diverse traits of the domestic phenotype without needing to talk in 
overly simplistic terms of ‘domestication genes’.

More recently it has been suggested that changes in the development and regula-
tion of NCC are linked not just to the domestic phenotype but also to the structural 
‘language readiness’ of the human brain (Benítez-Burraco et al. 2016). In particular, 
Benı́tez-Burraco et al. argue for a link between changes to the NCC and the devel-
opment of the human-typical ‘globular’ brain shape. This builds on previous work 
in which they have argued that the distinctive globular shape of the human brain 
is linked to key features of its modern-day patterns of neural connectivity (Boeckx 
and Benítez-Burraco 2014a, b), which in turn facilitate what they term ‘cross-mod-
ular’ thinking. In linguistic terms, this is exemplified by something like the syntax-
semantics interface. In more general terms, it relates to the capacity to make links 
across cognitive domains, something which may be core to the uniqueness of mod-
ern human cognition (e.g. Mithen 1996; Hauser 2009). This work is obviously in its 
very early stages, but is particularly intriguing regarding the parallels it offers with 
our work on the mechanism and necessary biological foundations for the cultural 
evolution of language.

Why has domestication had this effect on humans and not other species?

If domestication set the stage for the cultural evolution of language, it is quite rea-
sonable to ask why language itself is not part of the domestic phenotype. Why is 
something ‘language like’ not seen in other domesticated species? Focusing just on 
our two central case studies, why do we only see one of the two precursor traits in 
each instance, and yet humans exhibit both together? These are difficult questions, 
for which we do not pretend to have definitive answers. However, we think the fol-
lowing points are worth taking into consideration.

Much as we have focused on their similarities, there is also a need to acknowledge 
the differences between domesticated species. One important way in which they dif-
fer is the ‘pathway’ they take towards domestication. Some species, like cattle and 
sheep, are former prey animals that have been slowly corralled into our system of 
agriculture. Others, like dogs, began the process as freely associating commensals. 
In the human case, the process of domestication was one of self-domestication. We 
have already discussed the potential consequence of this fact in terms of human 
brain size increasing, rather than the typical domesticated pattern of reducing brain 
size. We are highly sceptical of any attempt to draw direct links between brain size 
and particular capabilities. However, it is at least plausible that this increase in brain 
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size is one contributing factor to the emergence of language (see MacWhinney 
2005).

Another way in which domesticated species differ is in terms of their evolution-
ary history prior to domestication. The evolutionary histories of many lineages have 
rendered them unamenable to domestication at all (Diamond 1997). Furthermore, 
if there is a key commonality between the Bengalese finch and the domestic dog, 
it is that domestication has acted to unleash ‘potentials’ that were already there in 
the ancestral population. The white-rumped munia is a vocal learner, but freed from 
selection to keep songs simple and canalized, the role of vocal learning expanded. 
The grey wolf exhibits sophisticated social cognition, and can reach dog-like levels 
of performance given extensive contact with humans and repeated exposure to the 
object-choice task, but does not seem to learn new signals. In the human case, might 
the combination of primate social cognition with, at least in the gestural realm, the 
capacity of primates to learn new signals, explain why both precursors emerged 
together?

We recognise that these brief thoughts can barely begin to address this question. 
However, we think there are ways in which experimental work could be done in this 
area. For example, as noted above, many of the more particular impacts of domes-
tication take the form of unleashed potentials. More precisely, potentials that have 
thus-far been limited by aspects of temperament. It should be possible to identify 
what these might be in particular instances. For example, Melis et al. (2006) found 
that chimpanzees who were seemingly unable to solve a co-operative dyadic task 
could do so if dyad-pairing was manipulated such that individuals with mutually 
high tolerance were paired together. The poor performance of chimpanzees, rela-
tive to dogs, on tasks of co-operative communication stands, then, as something that 
might be remedied through a change in chimpanzee temperament.

Summary

We have not attempted to present a comprehensive overview of human self-domes-
tication. Instead, we have focused on the more modest task of trying to close the 
perceived ‘gap’ between the two sets of data that form the core of this paper: the 
preconditions required for a structure-creating process of cultural transmission, 
and the two case studies of domestication in which parallels to those preconditions 
can be seen emerging. We hope we have helped close it somewhat in the following 
three ways. First, in focusing on the domestic phenotype we aim to root the idea 
of humans as domesticates in a concrete, coherent, and falsifiable framework. The 
focus on a particular set of traits, the domestic phenotype, and the evolutionary 
explanations for those traits allows us to move beyond metaphorical formulations of 
what it means to be ‘self-domesticated’. Second, we have identified two evolutionary 
circumstances—adaptation to the human-made environment and selection on tem-
perament—that are known to contribute to the emergence of the domestic pheno-
type in other species. The first of these has definitely been a major factor in human 
evolution; the role of the second, while more speculative, is supported by a range of 
comparative and archaeological evidence. Finally, we have reviewed a range of work 
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on the biological mechanisms underpinning domestication. These mechanisms are 
highly conserved—and thus present in a wide range of species, including humans—
and can account for the diverse traits of the domestic phenotype. We also touched 
on some recent work suggestive of a link between the mechanisms mediating the 
domestic phenotype and language itself.

Conclusion

There is now a wealth of evidence showing how language structure emerges through 
a process of cultural evolution. However, the wider implications of this work have 
received insufficient attention. In particular, our growing knowledge of the role 
played by cultural evolution has significant implications for what we should expect 
biological evolution to account for in the emergence of language. Rather than 
accounting for language structure itself, the key task for biological evolution lies in 
accounting for the foundational traits that make a process of structure-creating cul-
tural evolution possible. We identified two key traits: the central role of learning in 
the transmission of the communication system; and the ability to recognise the com-
municative intent of a signal or action.

In the Bengalese finch and the domestic dog we have two comparative case stud-
ies, each of which show one of these traits emerging in the context of domestication. 
Two key features of the domestication process stand out as particularly important in 
accounting for these instances of parallel evolution. The first concerns the relaxation 
of various selection pressures that had been important in the wild. The second con-
cerns the systemic impact of selection acting on the biological systems underpin-
ning temperament and aggression.

Humans share many of the hallmarks of a domesticated species. Much of human 
evolution has taken place in just the kind of human-made, selection-buffering envi-
ronment shared by domesticated species. There is also good evidence that humans 
may have undergone a similar kind of selection on temperament. Given these paral-
lels, we think the two case studies speak directly to the origin of these precursor 
traits in humans. The cultural evolution of language structure is rooted in an earlier 
process of self-domestication.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
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