212 research outputs found

    New Method and Analysis of Proximity Trajectory-Only Learned Dynamics for Small Body Gravity Fields

    Get PDF
    Recent missions to small bodies in the past decade (e.g., Rosetta, Hayabusa 2, and OSIRIS-REx) have reshaped our understanding of small bodies and inspired new, more-capable future missions. Despite the high demand for more missions, large uncertainties in small body properties make missions challenging. Recent work in stochastic optimal control can ensure safety in the face of uncertainty in state, constraints, and dynamics. These stochastic optimal controllers require a model of the underlying dynamics, which is difficult for proximity maneuvers and landing around small bodies. Shape models and finite element-like models are the state-of-the-art for high-fidelity gravity models, but they are computationally expensive and do not readily incorporate onboard data. No gravity model yet exists that can use short-horizon position and acceleration data from recent trajectories onboard in safety-critical autonomous proximity maneuvers and landing. Therefore, we propose a new trajectory-only learning-based method to develop a gravity model. We consider three learning frameworks: Gaussian Process Models, Neural Networks, and Physics-Informed Neural Networks. For each framework, we assess the benefits, computational costs, and limitations of the framework. We found that the Gaussian Process Model generally outperforms the other frameworks in cases of moderate uncertainty. As the uncertainty declines or the data is sufficiently filtered, Neural Networks with spectral normalization provide more accurate gravity models and are computationally cheaper to evaluate. Lastly, we reflect on the methods in this thesis and recommend possible problem reformulations for future research.</p

    Comparison of metal-dependent catalysis by HIV-1 and ASV integrase proteins using a new and rapid, moderate throughput assay for joining activity in solution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 integrase (IN) is an attractive target for the development of drugs to treat AIDS, and inhibitors of this viral enzyme are already in the clinic. Nevertheless, there is a continuing need to devise new approaches to block the activity of this viral protein because of the emergence of resistant strains. To facilitate the biochemical analysis of wild-type IN and its derivatives, and to measure the potency of prospective inhibitory compounds, a rapid, moderate throughput solution assay was developed for IN-catalyzed joining of viral and target DNAs, based on the detection of a fluorescent tag.</p> <p>Results</p> <p>A detailed, step-by-step description of the new joining assay is provided. The reactions are run in solution, the products captured on streptavidin beads, and activity is measured by release of a fluorescent tag. The procedure can be scaled up for the analysis of numerous samples, and is substantially more rapid and sensitive than the standard radioactive gel methods. The new assay is validated and its utility demonstrated via a detailed comparison of the Mg<sup>++</sup>- and Mn<sup>++</sup>-dependent activities of the IN proteins from human immunodeficiency virus type 1 (HIV-1) and the avian sarcoma virus (ASV). The results confirm that ASV IN is considerably more active than HIV-1 IN, but with both enzymes the initial rates of joining, and the product yields, are higher in the presence of Mn<sup>++ </sup>than Mg<sup>++</sup>. Although the pH optima for these two enzymes are similar with Mn<sup>++</sup>, they differ significantly in the presence of Mg<sup>++</sup>, which is likely due to differences in the molecular environment of the binding region of this physiologically relevant divalent cation. This interpretation is strengthened by the observation that a compound that can inhibit HIV-1 IN in the presence of either metal cofactors is only effective against ASV in the presence of Mn<sup>++</sup>.</p> <p>Conclusion</p> <p>A simplified, assay for measuring the joining activity of retroviral IN in solution is described, which offers several advantages over previous methods and the standard radioactive gel analyses. Based on comparisons of signal to background ratios, the assay is 10–30 times more sensitive than gel analysis, allows more rapid and accurate biochemical analyses of IN catalytic activity, and moderate throughput screening of inhibitory compounds. The assay is validated, and its utility demonstrated in a comparison of the metal-dependent activities of HIV-1 and ASV IN proteins.</p

    Structure-Based Optimization of a Novel Class of Aldehyde Dehydrogenase 1A (ALDH1A) Subfamily-Selective Inhibitors as Potential Adjuncts to Ovarian Cancer Chemotherapy

    Get PDF
    Aldehyde dehydrogenase (ALDH) activity is commonly used as a marker to identify cancer stem-like cells. The three ALDH1A isoforms have all been individually implicated in cancer stem-like cells and in chemoresistance; however, which isoform is preferentially expressed varies between cell lines. We sought to explore the structural determinants of ALDH1A isoform selectivity in a series of small-molecule inhibitors in support of research into the role of ALDH1A in cancer stem cells. An SAR campaign guided by a cocrystal structure of the HTS hit CM39 (7) with ALDH1A1 afforded first-in-class inhibitors of the ALDH1A subfamily with excellent selectivity over the homologous ALDH2 isoform. We also discovered the first reported modestly selective single isoform 1A2 and 1A3 inhibitors. Two compounds, 13g and 13h, depleted the CD133+ putative cancer stem cell pool, synergized with cisplatin, and achieved efficacious concentrations in vivo following IP administration. Compound 13h additionally synergized with cisplatin in a patient-derived ovarian cancer spheroid model

    Drug-Class Specific Impact of Antivirals on the Reproductive Capacity of HIV

    Get PDF
    Predictive markers linking drug efficacy to clinical outcome are a key component in the drug discovery and development process. In HIV infection, two different measures, viral load decay and phenotypic assays, are used to assess drug efficacy in vivo and in vitro. For the newly introduced class of integrase inhibitors, a huge discrepancy between these two measures of efficacy was observed. Hence, a thorough understanding of the relation between these two measures of drug efficacy is imperative for guiding future drug discovery and development activities in HIV. In this article, we developed a novel viral dynamics model, which allows for a mechanistic integration of the mode of action of all approved drugs and drugs in late clinical trials. Subsequently, we established a link between in vivo and in vitro measures of drug efficacy, and extract important determinants of drug efficacy in vivo. The analysis is based on a new quantity—the reproductive capacity—that represents in mathematical terms the in vivo analog of the read-out of a phenotypic assay. Our results suggest a drug-class specific impact of antivirals on the total amount of viral replication. Moreover, we showed that the (drug-)target half life, dominated by immune-system related clearance processes, is a key characteristic that affects both the emergence of resistance as well as the in vitro–in vivo correlation of efficacy measures in HIV treatment. We found that protease- and maturation inhibitors, due to their target half-life, decrease the total amount of viral replication and the emergence of resistance most efficiently

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. Methods: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting. Findings: Globally, for females, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and haemoglobinopathies and haemolytic anaemias in both 1990 and 2017. For males, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and tuberculosis including latent tuberculosis infection in both 1990 and 2017. In terms of YLDs, low back pain, headache disorders, and dietary iron deficiency were the leading Level 3 causes of YLD counts in 1990, whereas low back pain, headache disorders, and depressive disorders were the leading causes in 2017 for both sexes combined. All-cause age-standardised YLD rates decreased by 3·9% (95% uncertainty interval [UI] 3·1–4·6) from 1990 to 2017; however, the all-age YLD rate increased by 7·2% (6·0–8·4) while the total sum of global YLDs increased from 562 million (421–723) to 853 million (642–1100). The increases for males and females were similar, with increases in all-age YLD rates of 7·9% (6·6–9·2) for males and 6·5% (5·4–7·7) for females. We found significant differences between males and females in terms of age-standardised prevalence estimates for multiple causes. The causes with the greatest relative differences between sexes in 2017 included substance use disorders (3018 cases [95% UI 2782–3252] per 100 000 in males vs s1400 [1279–1524] per 100 000 in females), transport injuries (3322 [3082–3583] vs 2336 [2154–2535]), and self-harm and interpersonal violence (3265 [2943–3630] vs 5643 [5057–6302]). Interpretation: Global all-cause age-standardised YLD rates have improved only slightly over a period spanning nearly three decades. However, the magnitude of the non-fatal disease burden has expanded globally, with increasing numbers of people who have a wide spectrum of conditions. A subset of conditions has remained globally pervasive since 1990, whereas other conditions have displayed more dynamic trends, with different ages, sexes, and geographies across the globe experiencing varying burdens and trends of health loss. This study emphasises how global improvements in premature mortality for select conditions have led to older populations with complex and potentially expensive diseases, yet also highlights global achievements in certain domains of disease and injury. Funding: Bill & Melinda Gates Foundation

    Polyamide-Scorpion Cyclam Lexitropsins Selectively Bind AT-Rich DNA Independently of the Nature of the Coordinated Metal

    Get PDF
    Cyclam was attached to 1-, 2- and 3-pyrrole lexitropsins for the first time through a synthetically facile copper-catalyzed “click” reaction. The corresponding copper and zinc complexes were synthesized and characterized. The ligand and its complexes bound AT-rich DNA selectively over GC-rich DNA, and the thermodynamic profile of the binding was evaluated by isothermal titration calorimetry. The metal, encapsulated in a scorpion azamacrocyclic complex, did not affect the binding, which was dominated by the organic tail

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    The Global Burden of Diseases, Injuries and Risk Factors 2017 includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. METHODS: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting

    Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    How long one lives, how many years of life are spent in good and poor health, and how the population's state of health and leading causes of disability change over time all have implications for policy, planning, and provision of services. We comparatively assessed the patterns and trends of healthy life expectancy (HALE), which quantifies the number of years of life expected to be lived in good health, and the complementary measure of disability-adjusted life-years (DALYs), a composite measure of disease burden capturing both premature mortality and prevalence and severity of ill health, for 359 diseases and injuries for 195 countries and territories over the past 28 years. Methods We used data for age-specific mortality rates, years of life lost (YLLs) due to premature mortality, and years lived with disability (YLDs) from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to calculate HALE and DALYs from 1990 to 2017. We calculated HALE using age-specific mortality rates and YLDs per capita for each location, age, sex, and year. We calculated DALYs for 359 causes as the sum of YLLs and YLDs. We assessed how observed HALE and DALYs differed by country and sex from expected trends based on Socio-demographic Index (SDI). We also analysed HALE by decomposing years of life gained into years spent in good health and in poor health, between 1990 and 2017, and extra years lived by females compared with males. Findings Globally, from 1990 to 2017, life expectancy at birth increased by 7·4 years (95% uncertainty interval 7·1-7·8), from 65·6 years (65·3-65·8) in 1990 to 73·0 years (72·7-73·3) in 2017. The increase in years of life varied from 5·1 years (5·0-5·3) in high SDI countries to 12·0 years (11·3-12·8) in low SDI countries. Of the additional years of life expected at birth, 26·3% (20·1-33·1) were expected to be spent in poor health in high SDI countries compared with 11·7% (8·8-15·1) in low-middle SDI countries. HALE at birth increased by 6·3 years (5·9-6·7), from 57·0 years (54·6-59·1) in 1990 to 63·3 years (60·5-65·7) in 2017. The increase varied from 3·8 years (3·4-4·1) in high SDI countries to 10·5 years (9·8-11·2) in low SDI countries. Even larger variations in HALE than these were observed between countries, ranging from 1·0 year (0·4-1·7) in Saint Vincent and the Grenadines (62·4 years [59·9-64·7] in 1990 to 63·5 years [60·9-65·8] in 2017) to 23·7 years (21·9-25·6) in Eritrea (30·7 years [28·9-32·2] in 1990 to 54·4 years [51·5-57·1] in 2017). In most countries, the increase in HALE was smaller than the increase in overall life expectancy, indicating more years lived in poor health. In 180 of 195 countries and territories, females were expected to live longer than males in 2017, with extra years lived varying from 1·4 years (0·6-2·3) in Algeria to 11·9 years (10·9-12·9) in Ukraine. Of the extra years gained, the proportion spent in poor health varied largely across countries, with less than 20% of additional years spent in poor health in Bosnia and Herzegovina, Burundi, and Slovakia, whereas in Bahrain all the extra years were spent in poor health. In 2017, the highest estimate of HALE at birth was in Singapore for both females (75·8 years [72·4-78·7]) and males (72·6 years [69·8-75·0]) and the lowest estimates were in Central African Republic (47·0 years [43·7-50·2] for females and 42·8 years [40·1-45·6] for males). Globally, in 2017, the five leading causes of DALYs were neonatal disorders, ischaemic heart disease, stroke, lower respiratory infections, and chronic obstructive pulmonary disease. Between 1990 and 2017, age-standardised DALY rates decreased by 41·3% (38·8-43·5) for communicable diseases and by 49·8% (47·9-51·6) for neonatal disorders. For non-communicable diseases, global DALYs increased by 40·1% (36·8-43·0), although age-standardised DALY rates decreased by 18·1% (16·0-20·2)
    corecore