32 research outputs found

    Functional cerebral asymmetries of emotional processes in the healthy and bipolar brain

    Get PDF
    The perception and processing of emotions are of primary importance for social interaction, which confers faculties such as inferring what another person’s feels. Brain organisation of emotion perception has shown to primarily involve right hemisphere functioning. However, the brain may be functionally organised according to fundamental aspects of emotion such as valence, rather than involving processing of emotions in general. It should be noted, however, that emotion perception is not merely a perceptual process consisting in the input of emotional information, but also involves one’s emotional response. Therefore, the functional brain organisation of emotional processing may also be influenced by emotional experience. An experimental model for testing functional cerebral asymmetries (FCAs) of valenced emotional experience is uniquely found in bipolar disorder (BD) involving impaired ability to regulate emotions and eventually leading to depressive or manic episodes. Previous models have only explained hemispheric asymmetries for manic and depressive mood episodes, but not for BD euthymia. The present thesis sought to investigate FCAs in emotional processing in two major ways. First, FCAs underlying facial emotion perception under normal functioning was examined in healthy controls. Secondly, functional brain organisation in emotional processing was further investigated by assessing FCAs in the bipolarity continuum, used as an experimental model for studying the processing of emotions. In contrast with previous asymmetry models, results suggested a right hemisphere involvement in emotional experience regardless of valence. Atypical FCAs were found in euthymic BD patients reflecting inherent aspects of BD functional brain organisation that are free of symptomatic influence. Also, BD patients exhibited atypical connectivity in a default amygdala network particularly affecting the right hemisphere, suggesting intrinsic mechanisms associated with internal emotional states. Last, BD patients were associated with a reduced right hemisphere specialisation in visuospatial attention, therefore suggesting that right hemisphere dysfunction can also affect non-emotional processes. Taken together, the findings emphasize a BD continuum model relying on euthymia as a bridging state between usual mood and acute mood phases

    Models of hemispheric specialization in facial emotion perception—a reevaluation.

    Full text link

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    The Association Between Familial Risk and Brain Abnormalities Is Disease Specific: An ENIGMA-Relatives Study of Schizophrenia and Bipolar Disorder

    Get PDF
    Background: Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects. Methods: We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects. Results: FDRs-BD had significantly larger ICV (d = +0.16, q <.05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = −0.12, q <.05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < −0.09, q <.05 corrected); and third ventricle was larger (d = +0.15, q <.05 corrected). The findings were not explained by psychopathology in the relatives or control subjects. Conclusions: Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct

    10Kin1day: A Bottom-Up Neuroimaging Initiative.

    Get PDF
    We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain

    Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years

    Get PDF
    Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large‐scale studies. In response, we used cross‐sectional data from 17,075 individuals aged 3–90 years from the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to infer age‐related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta‐analysis and one‐way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes

    Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years

    Get PDF
    Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to examine age‐related trajectories inferred from cross‐sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3–90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter‐individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age‐related morphometric patterns
    corecore