329 research outputs found
All-optical ion generation for ion trap loading
We have investigated the all-optical generation of ions by photo-ionisation
of atoms generated by pulsed laser ablation. A direct comparison between a
resistively heated oven source and pulsed laser ablation is reported. Pulsed
laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium
flux, corresponding to atomic beams produced with oven temperatures greater
than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to
produce a thermal load more than one order of magnitude smaller than the oven
source. The atomic beam distributions obey Maxwell-Boltzmann statistics with
most probable speeds corresponding to temperatures greater than 2200 K. Below a
threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is
composed exclusively of ground state atoms. For higher fluences ions and
excited atoms are generated.Comment: 7 pages, 9 figure
Exponential Decay of Correlations for Strongly Coupled Toom Probabilistic Cellular Automata
We investigate the low-noise regime of a large class of probabilistic
cellular automata, including the North-East-Center model of Toom. They are
defined as stochastic perturbations of cellular automata belonging to the
category of monotonic binary tessellations and possessing a property of
erosion. We prove, for a set of initial conditions, exponential convergence of
the induced processes toward an extremal invariant measure with a highly
predominant spin value. We also show that this invariant measure presents
exponential decay of correlations in space and in time and is therefore
strongly mixing.Comment: 21 pages, 0 figure, revised version including a generalization to a
larger class of models, structure of the arguments unchanged, minor changes
suggested by reviewers, added reference
Benign recurrent intrahepatic cholestasis (BRIC): Evidence of genetic heterogeneity and delimitation of the BRIC locus to a 7-cM interval between D18S69 and D18S64
Benign recurrent intrahepatic cholestasis (BRIC) is an autosomal recessive liver disease characterized by multiple episodes of cholestasis without progression to chronic liver disease. The gene was previously assigned to chromosome 18q21, using a shared segment analysis in three families from the Netherlands. In the present study we report the linkage analysis of an expanded sample of 14 BRIC families, using 15 microsatellite markers from the 18q21 region. Obligate recombinants in two families place the gene in a 7-cM interval, between markers D18S69 and D18S64. All intervening markers had significant LOD scores in two-point linkage analysis. More over, we identified one family in which the BRIC gene seems to be unlinked to the 18q21 region, or that represents incomplete penetrance of the BRIC genotype
Muon spin rotation study of the intercalated graphite superconductor CaC6 at low temperatures
Muon spin rotation (muSR) experiments were performed on the intercalated
graphite CaC6 in the normal and superconducting state down to 20 mK. In
addition, AC magnetization measurements were carried out resulting in an
anisotropic upper critical field Hc2, from which the coherence lengths
xi_ab(0)=36.3(1.5) nm and xi_c(0)=4.3(7) nm were estimated. The anisotropy
parameter gamma_H= H_c2_ab/H_c2_c increases monotonically with decreasing
temperature. A single isotropic s-wave description of superconductivity cannot
account for this behaviour. From magnetic field dependent muSR experiments the
absolute value of the in-plane magnetic penetretion depth lambda_ab=78(3) nm
was determined. The temperature dependence of the superfluid density rho_s(T)
is slightly better described by a two-gap than a single-gap model
Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding
Within the broad class of multiferroics (compounds showing a coexistence of
magnetism and ferroelectricity), we focus on the subclass of "improper
electronic ferroelectrics", i.e. correlated materials where electronic degrees
of freedom (such as spin, charge or orbital) drive ferroelectricity. In
particular, in spin-induced ferroelectrics, there is not only a {\em
coexistence} of the two intriguing magnetic and dipolar orders; rather, there
is such an intimate link that one drives the other, suggesting a giant
magnetoelectric coupling. Via first-principles approaches based on density
functional theory, we review the microscopic mechanisms at the basis of
multiferroicity in several compounds, ranging from transition metal oxides to
organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic
frameworks, MOFs)Comment: 22 pages, 9 figure
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Improving Genetic Prediction by Leveraging Genetic Correlations Among Human Diseases and Traits
Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7 for height to 47 for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait. © 2018 The Author(s)
Age at first birth in women is genetically associated with increased risk of schizophrenia
Prof. Paunio on PGC:n jÀsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe
- âŠ