CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Improving Genetic Prediction by Leveraging Genetic Correlations Among Human Diseases and Traits
Authors
A.N. Adolfsson
I. Agartz
+239 more
E. Agerbo
H. Akil
D. Albani
J. Allardyce
N. Alliey-Rodriguez
T.D. Als
F. Amin
A. Anjorin
S. Awasthi
M.H. Azevedo
J.A. Badner
J.D. Barchas
N. Bass
M. Bauer
F. Bellivier
S.E. Bergen
D.W. Black
D.H.R. Blackwood
M. Boks
J. Boocock
R. Bruggeman
N.G. Buccola
M. Budde
W. Bunney
M. Burmeister
J. Bybjerg-Grauholm
W. Byerley
M. Bækvad-Hansen
A.D. Børglum
M. Casas
P. Cervantes
A.W. Charney
K. Choudhury
T.K. Clarke
C.R. Cloninger
J.R.I. Coleman
A. Corvin
W. Coryell
N. Craddock
D. Craig
C. Cruceanu
D. Curtis
P.M. Czerski
A.M. Dale
M.J. Daly
S. Datta
L. De Haan
C.A. de Leeuw
F. Degenhardt
J. Del-Favero
S. Djurovic
A.L. Dobbyn
G.J. Donohoe
J. Duan
F. Dudbridge
T. Elvsåshagen
V. Escott-Price
B. Etain
C.C. Fan
A. Fanous
S.B. Fischer
M. Flickinger
T.M. Foroud
A.J. Forstner
L. Forty
J. Frank
C. Fraser
R. Freedman
N.B. Freimer
M. Friedl
K. Gade
J. Garnham
H.A. Gaspar
C. Giambartolomei
M. Gill
S.D. Gordon
Katherine Gordon-Smith
E.K. Green
M.J. Green
T.A. Greenwood
M. Grigoroiu-Serbanescu
J. Grove
W. Guan
H. Gurling
M.L. Hamshere
C.S. Hansen
A.M. Hartmann
J. Hauser
M. Hautzinger
U. Heilbronner
S. Herms
M. Hipolito
P. Hoffmann
P.A. Holmans
L. Huckins
S. Jamain
A. Juréus
R.S. Kahn
R. Kandaswamy
R. Karlsson
M.C. Keller
J.L. Kennedy
E. Kenny
G.K. Kirov
S. Kittel-Schneider
Sarah Knott
J.A. Knowles
M. Kogevinas
A.C. Koller
L. Krabbendam
R. Krasucki
R. Kupka
J. Lawrence
W.B. Lawson
M. Leber
M. Leboyer
P.H. Lee
S.H. Lee
T. Lencz
D.F. Levinson
S.E. Levy
J.Z. Li
J.A. Lieberman
D.-Y. Lin
D.H. Linszen
J. Lissowska
C. Liu
S. Lucae
A. Maaser
D.J. MacIntyre
P.K.E. Magnusson
P.B. Mahon
R.M. Maier
W. Maier
A.K. Malhotra
M. Mattheisen
M. Mattingsdal
F. Mayoral
S.A. McCarroll
P. McGuffin
M.G. McInnis
J.D. McKay
A. McQuillin
H. Medeiros
S.E. Medland
I. Melle
F. Meng
L. Milani
V. Milanova
G.W. Montgomery
D.W. Morris
O. Mors
P.B. Mortensen
N. Mullins
I. Myin-Germeys
T.W. Mühleisen
B.M. Neale
C.M. Nievergelt
E.A. Nwulia
C. O'Donovan
L.M. Olde Loohuis
R.A. Ophoff
A.P.S. Ori
L. Oruc
M.J. Owen
J.G. Parra
C.B. Pedersen
M.G. Pedersen
R.H. Perlis
Amy Perry
T.H. Pers
A. Pfennig
J. Pimm
J.B. Potash
S.M. Purcell
V. Puri
D.J. Quested
J.A. Ramos-Quiroga
J. Raymond Depaulo
E.J. Regeer
A. Reif
C.S. Reinbold
J.P. Rice
S. Ripke
F. Rivas
M. Rivera
M.R. Robinson
L. Rossin
P. Roussos
D.M. Ruderfer
A.R. Sanders
A.F. Schatzberg
W.A. Scheftner
N.J. Schork
T. Shehktman
J. Shi
P.D. Shilling
E. Sigurdsson
P. Sklar
C. Slaney
O.B. Smeland
J.L. Sobell
A.T. Spijker
D. St Clair
E.A. Stahl
M. Steffens
S. Steinberg
J.S. Strauss
F. Streit
J. Strohmaier
T.S. Stroup
S. Szelinger
C. Sánchez-Mora
R.C. Thompson
T.E. Thorgeirsson
J. Treutlein
V. Trubetskoy
M. Trzaskowski
J. Van Os
H. Vedder
P.M. Visscher
W. Wang
Y. Wang
S.J. Watson
C.S. Weickert
T.W. Weickert
J.M. Whitehead Pavlides
D. Wiersma
S.H. Witt
N.R. Wray
S. Xi
W. Xu
J. Yang
A.H. Young
S. Zammit
P. Zandi
P. Zhang
Z. Zhu
S. Zollner
Publication date
7 March 2018
Publisher
Nature Publishing Group
Abstract
Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7 for height to 47 for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait. © 2018 The Author(s)
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
University of Worcester Research and Publications
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:wrap.eprints.org:7649
Last time updated on 02/03/2019