119 research outputs found
Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model
Aims: We investigate how well modeled solar irradiances agree with
measurements from the SORCE satellite, both for total solar irradiance and
broken down into spectral regions on timescales of several years. Methods: We
use the SATIRE model and compare modeled total solar irradiance (TSI) with TSI
measurements between 2003 and 2009. Spectral solar irradiance over 200-1630nm
is compared with the SIM instrument on SORCE between 2004 and 2009 during a
period of decline from moderate activity to the recent solar minimum in 10 nm
bands and for three spectral regions of significant interest: the UV integrated
over 200-300nm, the visible over 400-691nm and the IR between 972-1630 nm.
Results: The model captures 97% of observed TSI variation. In the spectral
comparison, rotational variability is well reproduced, especially between 400
and 1200 nm. The magnitude of change in the long-term trends is many times
larger in SIM at almost all wavelengths while trends in SIM oppose SATIRE in
the visible between 500 and 700nm and between 1000 and 1200nm. We discuss the
remaining issues with both SIM data and the identified limits of the model,
particularly with the way facular contributions are dealt with, the limit of
flux identification in MDI magnetograms during solar minimum and the model
atmospheres in the IR employed by SATIRE. It is unlikely that improvements in
these areas will significantly enhance the agreement in the long-term trends.
This disagreement implies that some mechanism other than surface magnetism is
causing SSI variations, in particular between 2004 and 2006, if the SIM data
are correct. Since SATIRE was able to reproduce UV irradiance between 1991 and
2002 from UARS, either the solar mechanism for SSI variation fundamentally
changed around the peak of cycle 23, or there is an inconsistency between UARS
and SORCE UV measurements. We favour the second explanation.Comment: 14 pages, 13 figure
Recommended from our members
Dynamics, stratospheric ozone, and climate change
Dynamics affects the distribution and abundance of stratospheric ozone directly through transport of ozone itself and indirectly through its effect on ozone chemistry via temperature and transport of other chemical species. Dynamical processes must be considered in order to understand past ozone changes, especially in the northern hemisphere where there appears to be significant low-frequency variability which can look “trend-like” on decadal time scales. A major challenge is to quantify the predictable, or deterministic, component of past ozone changes. Over the coming century, changes in climate will affect the expected recovery of ozone. For policy reasons it is important to be able to distinguish and separately attribute the effects of ozone-depleting substances and greenhouse gases on both ozone and climate. While the radiative-chemical effects can be relatively easily identified, this is not so evident for dynamics — yet dynamical changes (e.g., changes in the Brewer-Dobson circulation) could have a first-order effect on ozone over particular regions. Understanding the predictability and robustness of such dynamical changes represents another major challenge. Chemistry-climate models have recently emerged as useful tools for addressing these questions, as they provide a self-consistent representation of dynamical aspects of climate and their coupling to ozone chemistry. We can expect such models to play an increasingly central role in the study of ozone and climate in the future, analogous to the central role of global climate models in the study of tropospheric climate change
Recommended from our members
Advancements in decadal climate predictability: the role of nonoceanic drivers
We review recent progress in understanding the role of sea ice, land surface, stratosphere, and aerosols in decadal-scale predictability and discuss the perspectives for improving the predictive capabilities of current Earth system models (ESMs). These constituents have received relatively little attention because their contribution to the slow climatic manifold is controversial in comparison to that of the large heat capacity of the oceans. Furthermore, their initialization as well as their representation in state-of-the-art climate models remains a challenge. Numerous extraoceanic processes that could be active over the decadal range are proposed. Potential predictability associated with the aforementioned, poorly represented, and scarcely observed constituents of the climate system has been primarily inspected through numerical simulations performed under idealized experimental settings. The impact, however, on practical decadal predictions, conducted with realistically initialized full-fledged climate models, is still largely unexploited. Enhancing initial-value predictability through an improved model initialization appears to be a viable option for land surface, sea ice, and, marginally, the stratosphere. Similarly, capturing future aerosol emission storylines might lead to an improved representation of both global and regional short-term climatic changes. In addition to these factors, a key role on the overall predictive ability of ESMs is expected to be played by an accurate representation of processes associated with specific components of the climate system. These act as “signal carriers,” transferring across the climatic phase space the information associated with the initial state and boundary forcings, and dynamically bridging different (otherwise unconnected) subsystems. Through this mechanism, Earth system components trigger low-frequency variability modes, thus extending the predictability beyond the seasonal scale
Direct and indirect effects of solar variations on stratospheric ozone and temperature
We have used a fully coupled chemistry-climate model (WACCM) to investigate the relative importance of the direct and indirect effects of 11a solar variations on stratospheric temperature and ozone. Although the model does not contain a quasi-biennial oscillation (QBO) and uses fixed sea surface temperature (SST), it is able to produce a second maximum solar response in tropical lower stratospheric (TLS) temperature and ozone of approximately 0.5 K and 3%, respectively. In the TLS, the solar spectral variations in the chemistry scheme play a more important role than solar spectral variations in the radiation scheme in generating temperature and ozone responses. The chemistry effect of solar variations causes significant changes in the Brewer-Dobson (BD) circulation resulting in ozone anomalies in the TLS. The model simulations also show a negative feedback in the upper stratosphere between the temperature and ozone responses. A wavelet analysis of the modeled ozone and temperature time series reveals that the maximum solar responses in ozone and temperature caused by both chemical and radiative effects occur at different altitudes in the upper stratosphere. The analysis also confirms that both the direct radiative and indirect ozone feedback effects are important in generating a solar response in the upper stratospheric temperatures, although the solar spectral variations in the chemistry scheme give the largest solar cycle power in the upper stratospheric temperature
Transfer von festen, flüssigen und gasförmigen Stoffen aus Vulkanen in die Atmosphäre
Die häufigsten vulkanischen Volatilen sind H2O, CO2, SO3 und Halogene. Zusammensetzung, Menge und Injektionsraten von vulkanischen Gasen und Partikeln in die Troposphäre und Stratosphäre hängen ab von der chemischen Zusammensetzung eines Magmas, dem plattentektonischen Milieu sowie Eruptionsmechanismen und Eruptionsraten. Über 90% der eruptierten Magmen sind basaltischer Zusammensetzung mit niedriger Viskosität, relativ geringen Volatilengehalten und meist niedrigen Eruptionsraten sowie wenig explosiven Eruptionen überwiegend entlang der mittelozeanischen Rücken in großen Wassertiefen. Magmen in Inselbögen und Subduktionszonen an Kontinenträndern sind H2O-reich, in anderen plattentektonischen Milieus überwiegt in basaltischen Magmen CO2. In mafischen Magmen ist CO2 schlecht löslich und kann daher schon mehrere Kilometer unter der Erdoberfläche als Gasphase aus einem Magma entweichen. Felsische (hochdifferenzierte) Magmen, H2O-reich und CO2-arm, eruptieren oft hochexplosiv, insbesondere an Subduktionszonen, und mit hohen Eruptionsraten, z.B. El Chichón (Mexiko, 1982) und Pinatubo (Philippinen, 1991). Ihre Eruptionssäulen (Gas-/Partikelgemische) können bis ca. 40 km Höhe erreichen und sind Hauptlieferant der in die Stratosphäre injizierten Gasmengen
Sensitivity of the boreal winter circulation in the middle atmosphere to the quasi-biennial oscillation in MAECHAM5 simulations
The polar vortex in the Northern Hemisphere exhibits high intraseasonal and interannual variability which, to some degree, may be controlled by the quasi-biennial oscillation (QBO) in the tropical stratosphere. Here we analyze the QBO signal in the Northern Hemisphere polar vortex in a model simulation using the general circulation model MAECHAM5 ( Middle Atmosphere European Center Hamburg Model), which simulates the QBO as an internal mode of variability. Composites have been computed for the westerly and easterly QBO phases from early winter to late winter ( November December, December - January and January - February) of a 50-year experiment containing 20 complete QBO cycles. This method identifies tropical and midlatitude patterns in wind and temperature that are related to the secondary meridional circulation of the QBO extending towards the winter pole. In the tropics, significant QBO signature is observed in the mesosphere up to 0.05 hPa only in early winter and mainly in the easterly QBO phase forced by the parameterized gravity waves-mean flow interaction. At high latitudes, MAECHAM5 shows a significantly warmer (colder) polar stratosphere in the easterly ( westerly) QBO phase at 30 hPa accompanied by a weaker ( stronger) polar vortex in the late winter months, from December to February ( December to January) in the easterly ( westerly) phase of the QBO. In early winter there is no significant change in temperature and zonal mean zonal wind in the polar stratosphere. The analysis of EP fluxes shows a different behavior between QBO phases, with changes in the waveguide. Wave propagation occurs upwards and polewards in the easterly QBO phase at 30 hPa, while waves are refracted equatorward in the westerly phase. No relationship has been found between the tropical QBO and the final warming at the end of the boreal winter
- …
