46 research outputs found

    Life-Long Reduction in MyomiR Expression Does Not Adversely Affect Skeletal Muscle Morphology

    Get PDF
    We generated an inducible, skeletal muscle-specific Dicer knockout mouse to deplete microRNAs in adult skeletal muscle. Following tamoxifen treatment, Dicer mRNA expression was significantly decreased by 87%. Wild-type (WT) and Dicer knockout (KO) mice were subjected to either synergist ablation or hind limb suspension for two weeks. There was no difference in muscle weight with hypertrophy or atrophy between WT and KO groups; however, even with the significant loss of Dicer expression, myomiR (miR-1, -133a and -206) expression was only reduced by 38% on average. We next aged WT and KO mice for ~22 months following Dicer inactivation to determine if myomiR expression would be further reduced over a prolonged timeframe and assess the effects of myomiR depletion on skeletal muscle phenotype. Skeletal muscle Dicer mRNA expression remained significantly decreased by 80% in old KO mice and sequencing of cloned Dicer mRNA revealed the complete absence of the floxed exons in KO skeletal muscle. Despite a further reduction of myomiR expression to ~50% of WT, no change was observed in muscle morphology between WT and KO groups. These results indicate the life-long reduction in myomiR levels did not adversely affect skeletal muscle phenotype and suggest the possibility that microRNA expression is uniquely regulated in skeletal muscle

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

    Get PDF
    Abstract: In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M ⊙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded

    Recent Highlights from H.E.S.S.

    No full text

    Monoscopic Analysis of H.E.S.S. Phase II Data on PSR B1259–63/LS 2883

    Get PDF
    Cherenkov-Teleskope sind in der Lage, das schwache Cherenkovlicht aus Teilchenschauern zu detektieren, die von kosmischen Teilchen mit Energien von ca. 100 GeV bis 100 TeV in der Erdatmosphäre initiiert werden. Das Ziel ist die Detektion von Cherenkovlicht aus Schauern, die von Gammastrahlen erzeugt wurden, der größte Teil der Schauer stammt jedoch von geladenen Teilchen. Im Jahr 2012 wurde das H.E.S.S.-Observatorium in Namibia, bis dahin bestehend aus vier Teleskopen mit 100 m²-Spiegeln, um ein fünftes Teleskop mit einer Spiegelfläche von ca. 600 m² ergänzt. Aufgrund der großen Spiegelfläche besitzt dieses Teleskop die niedrigste Energieschwelle aller Teleskope dieser Art. In dieser Dissertation wird ein schneller Algorithmus namens MonoReco präsentiert, der grundlegende Eigenschaften der Gammastrahlen wie ihre Energien und Richtungen rekonstruieren kann. Dieser Algorithmus kann weiterhin unterscheiden, ob Schauer von Gammastrahlen oder von geladenen Teilchen der kosmischen Strahlung initiiert wurden. Diese Aufgaben werden mit mithilfe von künstlichen neuronalen Netzwerken erfüllt, welche ausschließlich die Momente der Intensitätsverteilungen in der Kamera des neuen Teleskops analysieren. Eine Energieschwelle von 59 GeV und Richtungsauflösungen von 0.1°-0.3° werden erreicht. Das Energiebias liegt bei wenigen Prozent, die Energieauflösung bei 20-30%. Unter anderem mit dem MonoReco-Algorithmus wurden Daten, die in der Zeit um das Periastron des Binärsystems PSR B1259-63/LS 2883 im Jahre 2014 genommen wurden, analysiert. Es handelt sich hierbei um einen Neutronenstern, der sich in einem 3,4-Jahres-Orbit um einen massereichen Stern mit einer den Stern umgebenden Scheibe aus Gas und Plasmen befindet. Zum ersten Mal konnte H.E.S.S. das Gammastrahlenspektrum dieses Systems bei Energien unterhalb von 200 GeV messen. Weiterhin wurde bei erstmaligen Beobachtungen zur Zeit des Periastrons ein lokales Flussminimum gemessen. Sowohl vor dem ersten als auch nach dem zweiten Transit des Neutronensterns durch die Scheibe wurden hohe Flüsse gemessen. Im zweiten Fall wurden Beobachtungen erstmals zeitgleich mit dem Fermi-LAT-Experiment durchgeführt, das wiederholt sehr hohe Flüsse in diesem Teil des Orbits messen konnte. Ein Vergleich der gemessenen Flüsse mit Vorhersagen eines leptonischen Modells zeigt gute Übereinstimmungen.Cherenkov telescopes can detect the faint Cherenkov light emitted by air showers that were initiated by cosmic particles with energies between approximately 100 GeV and 100 TeV in the Earth's atmosphere. Aiming for the detection of Cherenkov light emitted by gamma ray-initiated air showers, the vast majority of all detected showers are initiated by charged cosmic rays. In 2012 the H.E.S.S. observatory, until then comprising four telescopes with 100 m² mirrors each, was extended by adding a much larger fifth telescope with a very large mirror area of 600 m². Due to the large mirror area, this telescope has the lowest energy threshold of all telescopes of this kind. In this dissertation, a fast algorithm called MonoReco is presented that can reconstruct fundamental properties of the primary gamma rays like their direction or their energy. Furthermore, this algorithm can distinguish between air showers initiated either by gamma rays or by charged cosmic rays. Those tasks are accomplished with the help of artificial neural networks, which analyse moments of the intensity distributions in the camera of the new telescope exclusively. The energy threshold is 59 GeV and angular resolutions of 0.1°-0.3° are achieved. The energy reconstruction bias is at the level of a few percent, the energy resolution is at the level of 20-30%. Data taken around the 2014 periastron passage of the gamma-ray binary PSR B1259-63/LS 2883 were analysed with, among others, the MonoReco algorithm. This binary system comprises a neutron star in a 3.4 year orbit around a massive star with a circumstellar disk consisting of gas and plasma. For the first time the gamma-ray spectrum of this system could be measured by H.E.S.S. down to below 200 GeV. Furthermore, a local flux minimum could be measured during unprecedented measurements at the time of periastron. High fluxes were measured both before the first and after the second transit of the neutron star through the disk. In the second case measurements could be performed for the first time contemporaneously with the Fermi-LAT experiment, which has repeatedly detected very high fluxes at this part of the orbit. A good agreement between measured fluxes and predictions of a leptonic model is found

    HESS Prize

    No full text
    Thomas was awarded the H.E.S.S. prize for his numerous and highly valuable contributions to H.E.S.S. in the past few years. He played, in particular, a major role in the maintenance of the H.E.S.S. data acquisition system (DAQ), and contributed to the development and implementation of a mono classification scheme for the large telescope (CT5), which is the basis of the low-energy real-time analysis (RTA). This classification provides the fast and reliable backbone for the mono RTA, used to trigger follow-up observations of known variable sources like Active Galactic Nuclei (AGN) or the recently detected Gamma Ray Burst GRB 190829A, and to search for emission from new transients. In addition to his technical contributions to the H.E.S.S. collaboration, he participated in the data analysis and interpretation of several astrophysical sources, such as the binary system PSR B1259-63 with H.E.S.S.-I and H.E.S.S.-II data. His most significant achievement in the past months was his role in the successful implementation of the HESS DAQ cluster upgrade, which will ensure continued stable and reliable operation of H.E.S.S. in the coming years

    H.E.S.S. II observations of the 2014 periastron passage of PSR B1259–63/LS 2883

    No full text
    International audiencePSR B1259-63/LS2883 is a gamma-ray binary system composed of an O9.5Ve main sequence star, LS 2883, and a 47.8 ms spinning neutron star in a highly eccentric 3.4 yr orbit (eccentricity e=0.87e = 0.87). PSR B1259-63/LS2883 is so far the only gamma-ray binary in which the compact object has been firmly identified. H.E.S.S. observed this system around its periastron passages in 2004, 2007, 2011 and 2014. For this latter event, a detailed campaign was organised making use of the new capabilities of H.E.S.S. II, in particular its improved sensitivity and a lower energy threshold. This campaign covered for the first time the time of periastron and parts of the orbit so far unexplored at VHE energies, and included as well observations during the GeV flare observed contemporaneously with the Fermi-LAT. The analysis of the H.E.S.S. II data indicates a relatively high TeV flux during this GeV flare and also at orbital phases preceding the first neutron star crossing of the circumstellar disk. These results will be summarised and discussed in the context of previous models attempting to explain the complex gamma-ray emission from this source

    Optimisation of the Drive Software for the Medium-Sized Telescopes of the Cherenkov Telescope Array

    No full text
    The Cherenkov Telescope Array (CTA) is the next-generation ground-based observatoryfor gamma-ray astronomy at very high energies. In its initial Alpha Configuration, itwill consist of 64 imaging atmospheric Cherenkov telescopes (IACTs) of different size anddesign, which will be deployed in the form of two large arrays in the northern hemisphereat the Roque de Los Muchachos Observatory on La Palma (Canary Islands, Spain) andin the southern hemisphere at the Paranal Observatory in the Atacama Desert (Chile),respectively. The core energy range of CTA (approximately 100 GeV to several TeV) willbe covered by the Medium-Sized Telescopes (MSTs), which are planned to be built atboth sites.Observations of astronomical targets with MSTs are facilitated by the drive system, mov-ing the telescope in elevation and in azimuth direction, respectively. It is steered and con-trolled by the drive software, which uses the OPC Unified Architecture (OPC UA) stan-dard to communicate with the programmable logic controller (PLC) operating the drivemotors, and is implemented on top of the ALMA Common Software (ACS) framework(except for the PLC). In this contribution, the architecture of the MST drive software willbe presented. A particular focus will be on the description of the newly-developed softwarelibrary of the MST drive system and its algorithms for the generation and optimisationof the time-dependent trajectories which the telescope follows during the observation ofastronomical targets

    Control, Readout and Monitoring for the Medium-Sized Telesopes in the Cherenkov Telescope Array

    No full text
    The Cherenkov Telescope Array (CTA) is the next-generation ground-based gamma-ray observatory. Its design comprises close to 100 imaging atmospheric Cherenkov telescopes deployed at a southern (Paranal, Chile) and a northern (La Palma, Canary Islands, Spain) site. The inclusion of various array elements, like Large-Sized, Medium-Sized and Small-Sized Telescopes, instruments for atmosphere monitoring, etc, into the Array Control and Data Acquisition System (ACADA) poses a particular challenge which is met by an appropriate software architecture and a well-defined interface for array elements. This conference contribution describes exemplarily how the interface is implemented for the Medium-Sized Telescopes (MSTs, 12m diameter). The implementation uses the ALMA Common Software (ACS) as a framework for software applications facilitating the readout and control of telescope subsystems like the drive system or the pointing camera; the communication with subsystems takes advantage of the OPC UA protocol. It is also discussed what technologies (e.g. data bases) are used for the acquisition and storage of telescope-specific monitoring data
    corecore