118 research outputs found
Illustrating Cognitive Connections between Math and Language in Pre-Service Teachers’ Perceptions of Common or Everyday Terms
This paper introduces a new construct that we term Math Mediated Language (MML) focusing on the notion that common or everyday terms with mathematical meanings are important building blocks for students’ mathematical reasoning. A survey given to 96 pre-service early childhood educators indicated clear patterns of perceptions of these terms
Cognitive Performance May be Impaired by Exercise in a Hot, Humid Environment: A Preliminary Investigation
The purpose of this study was to examine the effects of acute active dehydration by exercise in a hot, humid environment on cognitive performance. Our findings were inconclusive compared to previous studies that reported decreased cognitive performance in manual laborers and military personnel working in extreme environmental conditions
Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection
On Earth, biological systems have evolved in response to environmental stressors, interactions dictated by physical forces that include gravity. The absence of gravity is an extreme stressor and the impact of its absence on biological systems is ill-defined. Astronauts who have spent extended time under conditions of minimal gravity (microgravity) experience an array of biological alterations, including perturbations in cardiovascular function. We hypothesized that physiological perturbations in cardiac function in microgravity may be a consequence of alterations in molecular and organellar dynamics within the cellular milieu of cardiomyocytes. We used a combination of mass spectrometry-based approaches to compare the relative abundance and turnover rates of 848 and 196 proteins, respectively, in rat neonatal cardiomyocytes exposed to simulated microgravity or normal gravity. Gene functional enrichment analysis of these data suggested that the protein content and function of the mitochondria, ribosomes, and endoplasmic reticulum were differentially modulated in microgravity. We confirmed experimentally that in microgravity protein synthesis was decreased while apoptosis, cell viability, and protein degradation were largely unaffected. These data support our conclusion that in microgravity cardiomyocytes attempt to maintain mitochondrial homeostasis at the expense of protein synthesis. The overall response to this stress may culminate in cardiac muscle atrophy
Comparing aerosol number and mass exhalation rates from children and adults during breathing, speaking and singing
Aerosol particles of respirable size are exhaled when individuals breathe, speak and sing and can transmit respiratory pathogens between infected and susceptible individuals. The COVID-19 pandemic has brought into focus the need to improve the quantification of the particle number and mass exhalation rates as one route to provide estimates of viral shedding and the potential risk of transmission of viruses. Most previous studies have reported the number and mass concentrations of aerosol particles in an exhaled plume. We provide a robust assessment of the absolute particle number and mass exhalation rates from measurements of minute ventilation using a non-invasive Vyntus Hans Rudolf mask kit with straps housing a rotating vane spirometer along with measurements of the exhaled particle number concentrations and size distributions. Specifically, we report comparisons of the number and mass exhalation rates for children (12–14 years old) and adults (19–72 years old) when breathing, speaking and singing, which indicate that child and adult cohorts generate similar amounts of aerosol when performing the same activity. Mass exhalation rates are typically 0.002–0.02 ng s(−1) from breathing, 0.07–0.2 ng s(−1) from speaking (at 70–80 dBA) and 0.1–0.7 ng s(−1) from singing (at 70–80 dBA). The aerosol exhalation rate increases with increasing sound volume for both children and adults when both speaking and singing
Regioselective routes to orthogonally-substituted aromatic MIDA boronates
A series of tetrasubstituted aromatics has been synthesized, many of which are based on elaborated N-methyliminodiacetic acid (MIDA)-boronates. A sequence employing nitration, bromination, stepwise Suzuki-Miyaura (SM) coupling with a boronic acid, then base-mediated unmasking of the boronic acid from the MIDA-boronate and a second SM-coupling has led to our desired, mainly 1,2,4,5-substituted tetrasubstituted aromatic targets
Reduced volume of the arcuate fasciculus in adults with high-functioning autism spectrum conditions
Atypical language is a fundamental feature of autism spectrum conditions (ASC), but few studies have examined the structural integrity of the arcuate fasciculus, the major white matter tract connecting frontal and temporal language regions, which is usually implicated as the main transfer route used in processing linguistic information by the brain. Abnormalities in the arcuate have been reported in young children with ASC, mostly in low-functioning or non-verbal individuals, but little is known regarding the structural properties of the arcuate in adults with ASC or, in particular, in individuals with ASC who have intact language, such as those with high-functioning autism or Asperger syndrome. We used probabilistic tractography of diffusion-weighted images (DWI) to isolate and scrutinise the arcuate in a mixed-gender sample of 18 high-functioning adults with ASC (17 Asperger syndrome) and 14 age- and IQ-matched typically-developing controls. Arcuate volume was significantly reduced bilaterally with clearest differences in the right hemisphere. This finding remained significant in an analysis of all male participants alone. Volumetric reduction in the arcuate was significantly correlated with the severity of autistic symptoms as measured by the Autism-Spectrum Quotient. These data reveal that structural differences are present even in high-functioning adults with ASC, who presented with no clinically manifest language deficits and had no reported developmental language delay. Arcuate structural integrity may be useful as an index of ASC severity and thus as a predictor and biomarker for ASC. Implications for future research are discussed
The Atacama Cosmology Telescope: Sunyaev Zel'dovich Selected Galaxy Clusters at 148 GHz in the 2008 Survey
We report on twenty-three clusters detected blindly as Sunyaev-Zel'dovich
(SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made
with data from the Atacama Cosmology Telescope 2008 observing season. All SZ
detections announced in this work have confirmed optical counterparts. Ten of
the clusters are new discoveries. One newly discovered cluster, ACT-CL
J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement
comparable to the most massive systems at lower redshifts. Simulations of the
cluster recovery method reproduce the sample purity measured by optical
follow-up. In particular, for clusters detected with a signal-to-noise ratio
greater than six, simulations are consistent with optical follow-up that
demonstrated this subsample is 100% pure. The simulations further imply that
the total sample is 80% complete for clusters with mass in excess of 6x10^14
solar masses referenced to the cluster volume characterized by five hundred
times the critical density. The Compton y -- X-ray luminosity mass comparison
for the eleven best detected clusters visually agrees with both self-similar
and non-adiabatic, simulation-derived scaling laws.Comment: 13 pages, 7 figures, Accepted for publication in Ap
Large eddy simulation using the general circulation model ICON
ICON (ICOsahedral Nonhydrostatic) is a unified modeling system for global numerical weather prediction (NWP) and climate studies. Validation of its dynamical core against a test suite for numerical weather forecasting has been recently published by Zängl et al. (2014). In the present work, an extension of ICON is presented that enables it to perform as a large eddy simulation (LES) model. The details of the implementation of the LES turbulence scheme in ICON are explained and test cases are performed to validate it against two standard LES models. Despite the limitations that ICON inherits from being a unified modeling system, it performs well in capturing the mean flow characteristics and the turbulent statistics of two simulated flow configurations - one being a dry convective boundary layer and the other a cumulus-topped planetary boundary layer.BMBF/01LK1202
Conformational Dynamics of Actin: Effectors and Implications for Biological Function
Actin is a protein abundant in many cell types. Decades of investigations have provided evidence that it has many functions in living cells. The diverse morphology and dynamics of actin structures adapted to versatile cellular functions is established by a large repertoire of actin-binding proteins. The proper interactions with these proteins assume effective molecular adaptations from actin, in which its conformational transitions play essential role. This review attempts to summarise our current knowledge regarding the coupling between the conformational states of actin and its biological function
- …