471 research outputs found

    Malaria and pneumonia effects on rice, vanilla production and rural household income in Madagascar: case of the Sava region

    Get PDF
    In Madagascar, malaria remains the leading cause of consultation and deaths at hospital at all ages and pneumonia is one of the main causes of the under-five mortality and account for 45% of children hospitalizations. The number of these cases and deaths has not decreased during the last ten years. This paper aims to determine the effects of malaria and pneumonia cases on rice and vanilla production and income. We used data from a cross-sectional survey conducted in 2016  by the authors on 975 rural households and 3,586 individuals of the SAVA region in the northeast of Madagascar. After checking the presence of endogeneity, ordinary least-square method was used instead of two-stage least squares. Our results showed that malaria has no effect on production, and therefore does not affect income. Pneumonia had an effect on production of rice and vanilla. Moreover, the cost of malaria and pneumonia healthcare burdened by households affect their consumption by reducing expenditure on housing. There are many campaigns for the fight against malaria in Madagascar, but pneumonia prevention measures are very rare. Therefore, pneumonia should be considered in the same way as malaria due to its effects on production and investment to fight against these two diseases must be strengthened in order to decrease the costs for the households

    DNA as a universal substrate for chemical kinetics

    Get PDF
    Molecular programming aims to systematically engineer molecular and chemical systems of autonomous function and ever-increasing complexity. A key goal is to develop embedded control circuitry within a chemical system to direct molecular events. Here we show that systems of DNA molecules can be constructed that closely approximate the dynamic behavior of arbitrary systems of coupled chemical reactions. By using strand displacement reactions as a primitive, we construct reaction cascades with effectively unimolecular and bimolecular kinetics. Our construction allows individual reactions to be coupled in arbitrary ways such that reactants can participate in multiple reactions simultaneously, reproducing the desired dynamical properties. Thus arbitrary systems of chemical equations can be compiled into real chemical systems. We illustrate our method on the Lotka–Volterra oscillator, a limit-cycle oscillator, a chaotic system, and systems implementing feedback digital logic and algorithmic behavior

    Loss of Aip1 reveals a role in maintaining the actin monomer pool and an in vivo oligomer assembly pathway

    Get PDF
    Enhanced polymerization of actin in latrunculin A–treated aip1Δ cells shows that filament assembly does not occur from monomeric actin alone in vivo

    Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules

    Get PDF
    The programming of cellular networks to achieve new biological functions depends on the development of genetic tools that link the presence of a molecular signal to gene-regulatory activity. Recently, a set of engineered RNA controllers was described that enabled predictable tuning of gene expression in the yeast Saccharomyces cerevisiae through directed cleavage of transcripts by an RNase III enzyme, Rnt1p. Here, we describe a strategy for building a new class of RNA sensing-actuation devices based on direct integration of RNA aptamers into a region of the Rnt1p hairpin that modulates Rnt1p cleavage rates. We demonstrate that ligand binding to the integrated aptamer domain is associated with a structural change sufficient to inhibit Rnt1p processing. Three tuning strategies based on the incorporation of different functional modules into the Rnt1p switch platform were demonstrated to optimize switch dynamics and ligand responsiveness. We further demonstrated that these tuning modules can be implemented combinatorially in a predictable manner to further improve the regulatory response properties of the switch. The modularity and tunability of the Rnt1p switch platform will allow for rapid optimization and tailoring of this gene control device, thus providing a useful tool for the design of complex genetic networks in yeast

    Monostability and multistability of genetic regulatory networks with different types of regulation functions

    Get PDF
    The official published version of the article can be found at the link below.Monostability and multistability are proven to be two important topics in synthesis biology and system biology. In this paper, both monostability and multistability are analyzed in a unified framework by applying control theory and mathematical tools. The genetic regulatory networks (GRNs) with multiple time-varying delays and different types of regulation functions are considered. By putting forward a general sector-like regulation function and utilizing up-to-date techniques, a novel Lyapunov–Krasovskii functional is introduced for achieving delay dependence to ensure less conservatism. A new condition is then proposed for the general stability of a GRN in the form of linear matrix inequalities (LMIs) that are dependent on the upper and lower bounds of the delays. Our general stability conditions are applicable to several frequently used regulation functions. It is shown that the existing results for monostability of GRNs are special cases of our main results. Five examples are employed to illustrate the applicability and usefulness of the developed theoretical results.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the U.K. under Grant BB/C506264/1, the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 60504008 and 60804028, the Program for New Century Excellent Talents in Universities of China, and the Alexander von Humboldt Foundation of Germany

    A Guide to Simple and Informative Binding Assays

    Get PDF
    The aim of binding assays is to measure interactions between two molecules, such as a protein binding another protein, a small molecule, or a nucleic acid. Hard work is required to prepare reagents, but flaws in the design of many binding experiments limit the information obtained. In particular many experiments fail to measure the affinity of the reactants for each other. This essay describes simple methods to get the most out of valuable reagents in binding experiments

    Prise en charge communautaire des maladies de l’enfance à Madagascar : de l’espoir au dysfonctionnement

    Get PDF
    En 2014, l’UNICEF avec le Ministère de la santé publique (MINSAP) a procédé au renforcement du programme de prise en charge des maladies de l’enfance au niveau communautaire. Bien que le programme soit efficace en ce sens qu’il contribue à l’augmentation du nombre d’enfants traités et diagnostiqués, la qualité de la prise en charge n’est pas satisfaisante (42,6% des agents de santé communautaires effectuent encore des erreurs). L’objectif de cet article est d’identifier les causes de ce dysfonctionnement

    On multistability of delayed genetic regulatory networks with multivariable regulation functions

    Get PDF
    The official published version of the article can be found at the link below.Many genetic regulatory networks (GRNs) have the capacity to reach different stable states. This capacity is defined as multistability which is an important regulation mechanism. Multiple time delays and multivariable regulation functions are usually inevitable in such GRNs. In this paper, multistability of GRNs is analyzed by applying the control theory and mathematical tools. This study is to provide a theoretical tool to facilitate the design of synthetic gene circuit with multistability in the perspective of control theory. By transforming such GRNs into a new and uniform mathematical formulation, we put forward a general sector-like regulation function that is capable of quantifying the regulation effects in a more precise way. By resorting to up-to-date techniques, a novel Lyapunov–Krasovskii functional (LKF) is introduced for achieving delay dependence to ensure less conservatism. New conditions are then proposed to ensure the multistability of a GRN in the form of linear matrix inequalities (LMIs) that are dependent on the delays. Our multistability conditions are applicable to several frequently used regulation functions especially the multivariable ones. Two examples are employed to illustrate the applicability and usefulness of the developed theoretical results.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK under Grants BB/C506264/1 and 100/EGM17735, the Royal Society of the UK, the National Natural Science Foundation of China under Grant 61028008, and the International Science and Technology Cooperation Project of China under Grant 2009DFA32050

    Synthetic biology: new engineering rules for an emerging discipline

    Get PDF
    Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development
    corecore