10 research outputs found

    An indicator for organic matter dynamics in temperate agricultural soils

    Full text link
    The heterogeneity of soil organic matter (SOM) and the small changes in soil organic carbon (SOC) compared to large total SOC stocks hinder a robust estimation of SOC turnover, in particular for more stable SOC. We developed a simple fractionation protocol for agricultural topsoils and tested it extensively on a range of soils in southern Belgium, including farmed soils, soils from long-term field trials, and paired sites after recent conversion to conservation farming. Our simple fractionation involves shaking the soil, wet sieving over 20 μm and analysing the SOC concentration in the soil as well as in the fine fraction (<20 μm). Eight biological indicators measured in an earlier study across the same monitoring network for the 0–10 cm topsoil were analysed in a conditional inference forest model in order to investigate the factors influencing the SOC fractions. Soil microbial biomass N explained the largest proportion of variation in both fractions. The fine fraction was also associated with factors explaining the regional trend in SOC distribution such as farmyard manure input, precipitation, land use and flow length. The variation in SOC content between treatments both in long-term trials and in farmers’ fields converted to conservation management was mainly attributed to changes within the coarse fraction. Thus, this fraction proves to be sensitive to management changes, although care should be taken to sample deep enough to represent the former plough layer inherited from the conventional tillage practice. Furthermore, the ratio between the coarse and the fine fraction showed a linear relationship (r² = 0.66) with the relative changes in SOC concentration over the last ten years. These fractions derived from a simple analytical approach are thus useful as an indicator for changes in SOC concentration. In analogy to biological indicators such as the soil microbial biomass C, the relationship between the fractions and relative changes in SOC concentration are likely to depend on climate conditions. Our methodology provides an indicator for use in routine analysis of agricultural topsoils, which is capable of predicting the effects of management practices on SOC concentrations in the short to mid-term (5–10 years)

    Air Pollution and Nonmalignant Respiratory Mortality in 16 Cohorts within the ESCAPE Project

    No full text
    Rationale: Prospective cohort studies have shown that chronic exposure to particulate matter and traffic-related air pollution is associated with reduced survival. However, the effects on nonmalignant respiratory mortality are less studied, and the data reported are less consistent. Objectives: We have investigated the relationship of long-term exposure to air pollution and nonmalignant respiratory mortality in 16 cohorts with individual level data within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE). Methods: Data from 16 ongoing cohort studies from Europe were used. The total number of subjects was 307,553. There were 1,559 respiratory deaths during follow-up. Measurements and Main Results: Air pollution exposure was estimated by land use regression models at the baseline residential addresses of study participants and traffic-proximity variables were derived from geographical databases following a standardized procedure within the ESCAPE study. Cohort-specific hazard ratios obtained by Cox proportional hazard models from standardized individual cohort analyses were combined using metaanalyses. We found no significant associations between air pollution exposure and nonmalignant respiratory mortality. Most hazard ratios were slightly below unity, with the exception of the traffic-proximity indicators. Conclusions: In this study of 16 cohorts, there was no association between air pollution exposure and nonmalignant respiratory mortality

    Long-term Exposure to Air Pollution and Cardiovascular Mortality: An Analysis of 22 European Cohorts.

    Get PDF
    BACKGROUND:: Air pollution has been associated with cardiovascular mortality, but it remains unclear as to whether specific pollutants are related to specific cardiovascular causes of death. Within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE), we investigated the associations of long-term exposure to several air pollutants with all cardiovascular disease (CVD) mortality, as well as with specific cardiovascular causes of death.\n\nMETHODS:: Data from 22 European cohort studies were used. Using a standardized protocol, study area-specific air pollution exposure at the residential address was characterized as annual average concentrations of the following: nitrogen oxides (NO2 and NOx); particles with diameters of less than 2.5 μm (PM2.5), less than 10 μm (PM10), and 10 μm to 2.5 μm (PMcoarse); PM2.5 absorbance estimated by land-use regression models; and traffic indicators. We applied cohort-specific Cox proportional hazards models using a standardized protocol. Random-effects meta-analysis was used to obtain pooled effect estimates.\n\nRESULTS:: The total study population consisted of 367,383 participants, with 9994 deaths from CVD (including 4,992 from ischemic heart disease, 2264 from myocardial infarction, and 2484 from cerebrovascular disease). All hazard ratios were approximately 1.0, except for particle mass and cerebrovascular disease mortality; for PM2.5, the hazard ratio was 1.21 (95% confidence interval = 0.87-1.69) per 5 μg/m and for PM10, 1.22 (0.91-1.63) per 10 μg/m.\n\nCONCLUSION:: In a joint analysis of data from 22 European cohorts, most hazard ratios for the association of air pollutants with mortality from overall CVD and with specific CVDs were approximately 1.0, with the exception of particulate mass and cerebrovascular disease mortality for which there was suggestive evidence for an association

    The limbic system: influence over motor control and learning

    No full text
    corecore