138 research outputs found

    Psychometric properties of the disease-specific health-related quality of life instrument VascuQoL in a Swedish setting

    Get PDF
    Background: Traditional outcome measures in peripheral arterial disease (PAD) provide insufficient information regarding patient benefit. It has therefore been suggested to add patient-reported outcome measures. The main aim of this study was to validate the Swedish Vascular Quality of Life questionnaire (VascuQoL) version, a patient-reported PAD-specific health-related quality of life (HRQoL) instrument. Methods: Two-hundred PAD patients were consecutively recruited from two university hospitals. Out of the 200 subjects, 129 had intermittent claudication and 71 had critical limb ischemia. Mean age was 70 +/- 9 y and 57% of the participants were male. All patients completed SF-36 and VascuQoL at the vascular outpatient clinic, when evaluated for invasive treatment. Risk factors and physiological parameters were registered. Construct validity was tested by correlation analysis versus SF-36 and was also assessed with multitrait/multi-item scaling analysis (MTMI). Sensitivity analysis regarding disease severity identification was performed. Reliability was assessed with Cronbach's alpha and responsiveness by standardized response mean (SRM) calculations. Results: Significant correlations were demonstrated between relevant subscales of VascuQoL and SF-36. MTMI showed acceptable construct validity, but some scaling-errors. VascuQoL significantly (p < 0.001) discriminated claudicants from critical limb ischemia patients. Cronbach's alpha was 0.94 and SRM 1.02 (sum score). Conclusions: The Swedish version of VascuQoL is valid and quantifies central aspects of HRQoL in PAD patients. Sensitivity analysis showed high ability to differentiate between disease severity and SRM illustrated excellent responsiveness. The relative abundance of items however makes use in the everyday clinical setting somewhat difficult

    Standards Recommendations for the Earth BioGenome Project

    Get PDF
    Funder: Howard Hughes Medical InstituteFunder: National Science Foundation; Grant(s): DBI:IIBR:CAREER #1943371A global international initiative such as the Earth BioGenome Project (EBP) requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress towards its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and, IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies and challenges may improve or change in the future requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met.NIH, EMBL, NSF, Smithsonian, NMNH, USDA, HHM

    Standards recommendations for the Earth BioGenome Project

    Get PDF
    A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met

    The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics.

    Get PDF
    ABSTRACT: A global genome database of all of Earth’s species diversity could be a treasure trove of scientific discoveries. However, regardless of the major advances in genome sequencing technologies, only a tiny fraction of species have genomic information available. To contribute to a more complete planetary genomic database, scientists and institutions across the world have united under the Earth BioGenome Project (EBP), which plans to sequence and assemble high-quality reference genomes for all ∼1.5 million recognized eukaryotic species through a stepwise phased approach. As the initiative transitions into Phase II, where 150,000 species are to be sequenced in just four years, worldwide participation in the project will be fundamental to success. As the European node of the EBP, the European Reference Genome Atlas (ERGA) seeks to implement a new decentralised, accessible, equitable and inclusive model for producing high-quality reference genomes, which will inform EBP as it scales. To embark on this mission, ERGA launched a Pilot Project to establish a network across Europe to develop and test the first infrastructure of its kind for the coordinated and distributed reference genome production on 98 European eukaryotic species from sample providers across 33 European countries. Here we outline the process and challenges faced during the development of a pilot infrastructure for the production of reference genome resources, and explore the effectiveness of this approach in terms of high-quality reference genome production, considering also equity and inclusion. The outcomes and lessons learned during this pilot provide a solid foundation for ERGA while offering key learnings to other transnational and national genomic resource projects.info:eu-repo/semantics/publishedVersio

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore