44 research outputs found

    New generation of nitric oxide-releasing porous materials: assessment of their potential to regulate biological functions

    Get PDF
    Nitric oxide (NO) presents innumerable biological roles, and its exogenous supplementation for therapeutic purposes has become a necessity. Some nanoporous materials proved to be potential vehicles for NO with high storage capacity. However, there is still a lack of information about their efficiency to release controlled NO and if they are biocompatible and biologically stable. In this work, we address this knowledge gap starting by evaluating the NO release and stability under biological conditions and their toxicity with primary keratinocyte cells. Titanosilicates (ETS-4 and ETS-10 types) and clay-based materials were the materials under study, which have shown in previous studies suitable NO gas adsorption/release rates. ETS-4 proved to be the most promising material, combining good biocompatibility at 180 μg/mL, stability and slower NO release. ETS-10 and ETAS-10 showed the best biocompatibility at the same concentration and, in the case of clay-based materials, CoOS is the least toxic of those tested and the one that releases the highest NO amount. The potentiality of these new NO donors to regulate biological functions was assessed next by controlling the mitochondrial respiration and the cell migration. NO-loaded ETS-4 regulates O2 consumption and cell migration in a dose-dependent manner. For cell migration, a biphasic effect was observed in a narrow range of ETS-4 concentration, with a stimulatory effect becoming inhibitory just by doubling ETS-4 concentration. For the other materials, no effective regulation was achieved, which highlights the relevance of the new assessment presented in this work for nanoporous NO carriers that will pave the way for further developments.publishe

    N-doped sponge-like biochar: a promising CO2 sorbent for CO₂/CH₄ and CO2/N₂ gas separation

    Get PDF
    Sponge-like biochar sorbents were prepared from the dissolution of chitosan followed by freeze-drying methodology and pyrolysis at three different temperatures (400, 600, and 800 °C) to produce sustainable N-enriched carbon materials with enhanced CO2 uptake from CO2/CH4 and CO2/N2 gas mixtures. The pyrolysis process was reproduced by operando TGA-IR to study the gas evolved from the pyrolysis process. It was found that the pyrolysis temperature highly influences the textural properties of the chitosan sponge-like biochar materials, impacting mainly the amount and type of the N-species on the sample but also at the microporosity. XPS revealed the transformation of the amino groups from chitosan into pyridinic-N, pyrrolic-N, graphitic center-N, and graphitic valley-N or pyridine-N oxide species during the pyrolysis process. Increasing the pyrolysis temperature enhanced the quantity of the latter two N-type species. All sponge-like biochars adsorbed higher amounts of CO2 compared with CH4 and N2 gases, with maximum CO2 uptake (∼1.6 mmol⋅g−1) at 100 kPa and 25 °C for the sample pyrolyzed at 600 °C (named CTO_P600). Biochar produced at 800 °C showed no longer adsorption capacity for CH4 and N2, having the highest selectivity value for CO2/N2 separation under continuous flux conditions among all prepared biochar sorbents. Isobaric CO2 adsorption measurements on the CTO_P600 sorbent revealed that physisorption phenomena predominantly governed the CO2 adsorption process, which was confirmed by its consistent adsorption capacity after 10 consecutive adsorption–desorption cycles. Moreover, the biochar exhibited tolerance to water vapor adsorption, indicating its suitability to work under moisture-rich conditions.publishe

    First-Principles Model to Evaluate Quantitatively the Long-Life Behavior of Cellulose Acetate Polymers

    Get PDF
    UIDB/04028/2020 UIDP/04028/2020 UID/QUI/50006/2019A deep understanding of the degradation of cellulose diacetate (CDA) polymer is crucial in finding the appropriate long-term stability solution. This work presents an investigation of the reaction mechanism of hydrolysis using electronic density functional theory calculations with the B3LYP/6-31++G*∗ level of theory to determine the energetics of the degradation reactions. This information was coupled with the transition-state theory to establish the kinetics of degradation for both the acid-catalyzed and noncatalyzed degradation pathways. In this model, the dependence on water concentration of the polymer as a function of pH and the evaporation of acetic acid from the polymer is explicitly accounted for. For the latter, the dependence of the concentration of acetic acid inside the films with the partial pressure on the surrounding environment was measured by sorption isotherms, where Henry's law constant was measured as a function of temperature. The accuracy of this approach was validated through comparison with experimental results of CDA-accelerated aging experiments. This model provides a step forward for the estimation of CDA degradation dependence on environmental conditions. From a broader perspective, this method can be translated to establish degradation models to predict the aging of other types of polymeric materials from first-principles calculations.publishersversionpublishe

    Pyrolyzed chitosan-based materials for CO2/CH4 separation

    Get PDF
    Chitosan is a biopolymer obtained by deacetylation of chitin extracted from sub-products of the food industry and it is rich in nitrogen content. Pyrolyzed chitosan– and chitosan-periodic mesoporous organosilica (PMO)– based porous materials with different pore structures and chemical features are prepared using different dry methods and ensuing pyrolysis at 800 °C, for application in the CO2/CH4 adsorption/separation. The highest CO2 adsorption capacity (1.37 mol·kg−1 at 100 kPa; 1.9 mol·kg−1 at 500 kPa) and the best selectivity for CO2/CH4 separation (95 at 500 kPa) is obtained using 1.5% (m/v) of chitosan solution dried under supercritical CO2. This material combines a good CO2 adsorption capacity with one of the highest selectivities for CO2/CH4 separation of the literature, arising as a promising alternative adsorbent for natural gas or biogas upgrading at reduced cost. The presence of high nitrogen content together with pores of diameter around 2 nm leads to an increase of the CO2 adsorption capacity. In the case of chitosan-PMO-based materials, the activation step using both acid and crushing methods is crucial to increase the CO2 adsorbed amount. Here, the highest CO2 adsorption capacity and the highest selectivity are obtained by the chitosan-PMO crushed adsorbent and the chitosan-PMO material activated with sulfuric acid, respectively. These observations indicate the importance of the controlled attack of the material surface to enhance the diffusion of the target gases within the adsorbent, avoiding the adsorption of other species.publishe

    Moisture effect on the separation of CO2/CH4 mixtures with amine-functionalised porous silicas

    Get PDF
    The effect of minor amounts of water on the CO2 and CH4 adsorption on primary and secondary amine-functionalised mesoporous silicas (APTES@SBA-15 and DEAPTES@SBA15, respectively) was studied with a combination of high-pressure gas adsorption, solid state NMR of labelled 13CO2 and density functional theory (DFT) calculations. Known amounts of water were pre-adsorbed on the materials (0.047 to 0.157 mmol∙g−1) and the adsorption performance for CO2 and CH4 was compared to the performance of the dry samples. We observed that even when only minor amounts of water are present, the tertiary amine-functionalised material revealed a significant enhancement of the selectivity for CO2 (from ca. 5.8 to 208) while the one with primary amine maintained the same adsorption properties. This is related to the change in the adsorption mechanism in DEAPTES@SBA15 when water is present since water participates in the reaction of the tertiary amine with CO2 to produce bicarbonate (confirmed by NMR and DFT results). Such species was not observed in APTES@SBA-15 with water. From a broader perspective, the results presented in this work are relevant to confirm the suitability of this type of hybrid adsorbents in industrial applications related with CO2 adsorption, where minor amounts of water may be present in the process streams, such as during bio, landfill, or natural gas upgrading, or also in carbon capture applications.publishe

    The influence of the textural properties of activated carbons on acetaminophen adsorption at different temperatures

    Get PDF
    The influence of temperature (20–40 °C) on the acetaminophen adsorption onto activated carbons with different textures was studied. Different temperature dependences, not explained by kinetic effects, were observed for carbons with different micropore size distribution patterns: adsorption capacity increased for pine gasification residues (Pi-fa) derived carbons and decreased for sisal based materials. No significant variation was seen for carbon CP. The species identified by 1H NMR spectroscopy on the back-extraction solution proved that during the adsorption process exist the conditions required to promote the formation of acetaminophen oligomers which have constrained access to the narrow microporosity. The rotation energy of the dihedral angle between monomers (estimated by electronic DFT methods) showed that conformations in the planar form are less stable than the non-planar conformation (energy barrier of 70 and 23 kJ mol-1), but have critical dimensions similar to the monomer and can access most of the micropore volume. The enthalpy change of the overall process showed that the energy gain of the system (endothermic) for Pi-fa samples (˜40 kJ mol-1) was enough to allow a change in the dimer, or even a larger oligomer, conformation to the planar form. This will permit adsorption in the narrow micropores, thus explaining the uptake increase with temperature. Non-continuous micropore size distributions centered at pore widths close to the critical dimensions of the planar form seem to be crucial for a positive evolution of the adsorption capacity with temperature

    Decision making based on hybrid modeling approach applied to cellulose acetate based historical films conservation

    Get PDF
    no. 760801\NEMOSINE UID/QUI/50006/2020Preserving culture heritage cellulose acetate-based historical films is a challenge due to the long-term instability of these complex materials and a lack of prediction models that can guide conservation strategies for each particular film. In this work, a cellulose acetate degradation model is proposed as the basis for the selection of appropriate strategies for storage and conservation for each specimen, considering its specific information. Due to the formulation complexity and diversity of cellulose acetate-based films produced over the decades, we hereby propose a hybrid modeling approach to describe the films degradation process. The problem is addressed by a hybrid model that uses as a backbone a first-principles based model to describe the degradation kinetics of the pure cellulose diacetate polymer. The mechanistic model was successfully adapted to fit experimental data from accelerated aging of plasticized films. The hybrid model considers then the specificity of each historical film via the development of two chemometric models. These models resource on gas release data, namely acetic acid, and descriptors of the films (manufacturing date, AD-strip value and film type) to assess the current polymer degradation state and estimate the increase in the degradation rate. These estimations are then conjugated with storage conditions (e.g., temperature and relative humidity, presence of adsorbent in the film’s box) and used to feed the mechanistic model to provide the required time degradation simulations. The developed chemometric models provided predictions with accuracy more than 87%. We have found that the storage archive as well as the manufacturing company are not determining factors for conservation but rather the manufacturing date, off gas data as well as the film type. In summary, this hybrid modeling was able to develop a practical tool for conservators to assess films conservation state and to design storage and conservation policies that are best suited for each cultural heritage film.publishersversionpublishe

    ARIA 2016 : Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle

    Get PDF
    The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and populations. ARIA-disseminated and implemented in over 70 countries globally-is now focusing on the implementation of emerging technologies for individualized and predictive medicine. MASK [MACVIA (Contre les Maladies Chroniques pour un Vieillissement Actif)-ARIA Sentinel NetworK] uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group and by patients themselves. An app (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control and work productivity as well as a clinical decision support system. It is associated with an inter-operable tablet for physicians and other health care professionals. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing. The aim of the novel ARIA approach is to provide an active and healthy life to rhinitis sufferers, whatever their age, sex or socio-economic status, in order to reduce health and social inequalities incurred by the disease.Peer reviewe

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Evaluation of an Imine-Linked Polymer Organic Framework for Storage and Release of H<sub>2</sub>S and NO

    No full text
    Hydrogen sulfide (H2S) and nitric oxide (NO) are especially known as toxic and polluting gases, yet they are also endogenously produced and play key roles in numerous biological processes. These two opposing aspects of the gases highlight the need for new types of materials to be developed in addition to the most common materials such as activated carbons and zeolites. Herein, a new imine-linked polymer organic framework was obtained using the inexpensive and easy-to-access reagents isophthalaldehyde and 2,4,6-triaminopyrimidine in good yield (64%) through the simple and catalyst-free Schiff-base reaction. The polymeric material has microporosity, an ABET surface area of 51 m2/g, and temperature stability up to 300 °C. The obtained 2,4,6-triaminopyrimidine imine-linked polymer organic material has a higher capacity to adsorb NO (1.6 mmol/g) than H2S (0.97 mmol/g). Release studies in aqueous solution showed that H2S has a faster release (3 h) from the material than NO, for which a steady release was observed for at least 5 h. This result is the first evaluation of the possibility of an imine-linked polymer organic framework being used in the therapeutic release of NO or H2S
    corecore