146 research outputs found

    Mutations in Putative Mutator Genes of Mycobacterium tuberculosis Strains of the W-Beijing Family

    Get PDF
    Alterations in genes involved in the repair of DNA mutations (mut genes) result in an increased mutation frequency and better adaptability of the bacterium to stressful conditions. W-Beijing genotype strains displayed unique missense alterations in three putative mut genes, including two of the mutT type (Rv3908 and mutT2) and ogt. These polymorphisms were found to be characteristic and unique to W-Beijing phylogenetic lineage. Analysis of the mut genes in 55 representative W-Beijing isolates suggests a sequential acquisition of the mutations, elucidating a plausible pathway of the molecular evolution of this clonal family. The acquisition of mut genes may explain in part the ability of the isolates of W-Beijing type to rapidly adapt to their environment

    Behavioural patterns in allergic rhinitis medication in Europe : A study using MASK-air(R) real-world data

    Get PDF
    Background Co-medication is common among patients with allergic rhinitis (AR), but its dimension and patterns are unknown. This is particularly relevant since AR is understood differently across European countries, as reflected by rhinitis-related search patterns in Google Trends. This study aims to assess AR co-medication and its regional patterns in Europe, using real-world data. Methods We analysed 2015-2020 MASK-air(R) European data. We compared days under no medication, monotherapy and co-medication using the visual analogue scale (VAS) levels for overall allergic symptoms ('VAS Global Symptoms') and impact of AR on work. We assessed the monthly use of different medication schemes, performing separate analyses by region (defined geographically or by Google Trends patterns). We estimated the average number of different drugs reported per patient within 1 year. Results We analysed 222,024 days (13,122 users), including 63,887 days (28.8%) under monotherapy and 38,315 (17.3%) under co-medication. The median 'VAS Global Symptoms' was 7 for no medication days, 14 for monotherapy and 21 for co-medication (p < .001). Medication use peaked during the spring, with similar patterns across different European regions (defined geographically or by Google Trends). Oral H-1-antihistamines were the most common medication in single and co-medication. Each patient reported using an annual average of 2.7 drugs, with 80% reporting two or more. Conclusions Allergic rhinitis medication patterns are similar across European regions. One third of treatment days involved co-medication. These findings suggest that patients treat themselves according to their symptoms (irrespective of how they understand AR) and that co-medication use is driven by symptom severity.Peer reviewe

    Allergen immunotherapy in MASK-air users in real-life : Results of a Bayesian mixed-effects model

    Get PDF
    Background Evidence regarding the effectiveness of allergen immunotherapy (AIT) on allergic rhinitis has been provided mostly by randomised controlled trials, with little data from real-life studies. Objective To compare the reported control of allergic rhinitis symptoms in three groups of users of the MASK-air(R) app: those receiving sublingual AIT (SLIT), those receiving subcutaneous AIT (SCIT), and those receiving no AIT. Methods We assessed the MASK-air(R) data of European users with self-reported grass pollen allergy, comparing the data reported by patients receiving SLIT, SCIT and no AIT. Outcome variables included the daily impact of allergy symptoms globally and on work (measured by visual analogue scales-VASs), and a combined symptom-medication score (CSMS). We applied Bayesian mixed-effects models, with clustering by patient, country and pollen season. Results We analysed a total of 42,756 days from 1,093 grass allergy patients, including 18,479 days of users under AIT. Compared to no AIT, SCIT was associated with similar VAS levels and CSMS. Compared to no AIT, SLIT-tablet was associated with lower values of VAS global allergy symptoms (average difference = 7.5 units out of 100; 95% credible interval [95%CrI] = -12.1;-2.8), lower VAS Work (average difference = 5.0; 95%CrI = -8.5;-1.5), and a lower CSMS (average difference = 3.7; 95%CrI = -9.3;2.2). When compared to SCIT, SLIT-tablet was associated with lower VAS global allergy symptoms (average difference = 10.2; 95%CrI = -17.2;-2.8), lower VAS Work (average difference = 7.8; 95%CrI = -15.1;0.2), and a lower CSMS (average difference = 9.3; 95%CrI = -18.5;0.2). Conclusion In patients with grass pollen allergy, SLIT-tablet, when compared to no AIT and to SCIT, is associated with lower reported symptom severity. Future longitudinal studies following internationally-harmonised standards for performing and reporting real-world data in AIT are needed to better understand its 'real-world' effectiveness.Peer reviewe

    ARIA-EAACI statement on asthma and COVID-19 (June 2, 2020)

    Get PDF
    Non peer reviewe

    ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe

    Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information

    Get PDF
    Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    May Measurement Month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension

    Get PDF
    Aims Raised blood pressure (BP) is the biggest contributor to mortality and disease burden worldwide and fewer than half of those with hypertension are aware of it. May Measurement Month (MMM) is a global campaign set up in 2017, to raise awareness of high BP and as a pragmatic solution to a lack of formal screening worldwide. The 2018 campaign was expanded, aiming to include more participants and countries. Methods and results Eighty-nine countries participated in MMM 2018. Volunteers (≥18 years) were recruited through opportunistic sampling at a variety of screening sites. Each participant had three BP measurements and completed a questionnaire on demographic, lifestyle, and environmental factors. Hypertension was defined as a systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg, or taking antihypertensive medication. In total, 74.9% of screenees provided three BP readings. Multiple imputation using chained equations was used to impute missing readings. 1 504 963 individuals (mean age 45.3 years; 52.4% female) were screened. After multiple imputation, 502 079 (33.4%) individuals had hypertension, of whom 59.5% were aware of their diagnosis and 55.3% were taking antihypertensive medication. Of those on medication, 60.0% were controlled and of all hypertensives, 33.2% were controlled. We detected 224 285 individuals with untreated hypertension and 111 214 individuals with inadequately treated (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg) hypertension. Conclusion May Measurement Month expanded significantly compared with 2017, including more participants in more countries. The campaign identified over 335 000 adults with untreated or inadequately treated hypertension. In the absence of systematic screening programmes, MMM was effective at raising awareness at least among these individuals at risk

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe
    corecore