345 research outputs found

    Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

    Get PDF
    For abstract see published article

    Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    This Letter presents a search for new light resonances decaying to pairs of quarks and produced in association with a high-pT photon or jet. The dataset consists of proton–proton collisions with an integrated luminosity of 36.1 fb−1at a centre-of-mass energy of √s=13TeV recorded by the ATLAS detector at the Large Hadron Collider. Resonance candidates are identified as massive large-radius jets with substructure consistent with a particle decaying into a quark pair. The mass spectrum of the candidates is examined for local excesses above background. No evidence of a new resonance is observed in the data, which are used to exclude the production of a lepto-phobic axial-vector Z boson

    Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC

    Get PDF
    The performance of identification algorithms (“taggers”) for hadronically decaying top quarks and W bosons in pp collisions at √s=13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb −1 for the tt ¯ and γ+jet and 36.7 fb −1 −1 for the dijet event topologies

    In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector

    Get PDF
    The response of the ATLAS detector to largeradius jets is measured in situ using 36.2 fb−1 of √s = 13 TeV proton–proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transversemomentum and mass responses in simulations are found to be about 2–3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (pT). The precision of the relative jet energy scale is 1–2% for 200 GeV < pT < 2 TeV, while that of the mass scale is 2–10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10–15% over the same pT range

    Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at √s=2.76 TeV with ATLAS

    Get PDF
    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb-1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity

    Anatomy of the sign-problem in heavy-dense QCD

    Get PDF
    QCD at finite densities of heavy quarks is investigated using the density-of-states method. The phase factor expectation value of the quark determinant is calculated to unprecedented precision as a function of the chemical potential. Results are validated using those from a reweighting approach where the latter can produce a significant signalto-noise ratio. We confirm the particle–hole symmetry at low temperatures, find a strong sign problem at intermediate values of the chemical potential, and an inverse Silver Blaze feature for chemical potentials close to the onset value: here, the phase-quenched theory underestimates the density of the full theory

    Search for anomalous couplings in the W tb vertex from the measurement of double differential angular decay rates of single top quarks produced in the t-channel with the ATLAS detector

    Get PDF
    The electroweak production and subsequent decay of single top quarks is determined by the properties of the Wtb vertex. This vertex can be described by the complex parameters of an effective Lagrangian. An analysis of angular distributions of the decay products of single top quarks produced in the t -channel constrains these parameters simultaneously. The analysis described in this paper uses 4.6 fb−1 of proton-proton collision data at √s =7 TeV collected with the ATLAS detector at the LHC. Two parameters are measured simultaneously in this analysis. The fraction f 1 of decays containing transversely polarised W bosons is measured to be 0.37 ± 0.07 (stat.⊕syst.). The phase ÎŽ − between amplitudes for transversely and longitudinally polarised W bosons recoiling against left-handed b-quarks is measured to be −0.014π ± 0.036π (stat.⊕syst.). The correlation in the measurement of these parameters is 0.15. These values result in two-dimensional limits at the 95% confidence level on the ratio of the complex coupling parameters g R and V L, yielding Re[g R /V L] ∈ [−0.36, 0.10] and Im[g R /V L] ∈ [−0.17, 0.23] with a correlation of 0.11. The results are in good agreement with the predictions of the Standard Model

    Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector

    Get PDF
    A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions

    Measurement of the tt̄W and tt̄Z production cross sections in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    The production cross sections of top-quark pairs in association with massive vector bosons have been measured using data from pp collisions at s√ = 8 TeV. The dataset corresponds to an integrated luminosity of 20.3 fb−Âč collected by the ATLAS detector in 2012 at the LHC. Final states with two, three or four leptons are considered. A fit to the data considering the tt̄W and tt̄Z processes simultaneously yields a significance of 5.0σ (4.2σ) over the background-only hypothesis for ttÂŻWttÂŻW (tt̄Z) production. The measured cross sections are σtt̄W = 369 + 100−91 fb and σtt̄Z = 176 + 58−52 fb. The background-only hypothesis with neither tt̄W nor tt̄Z production is excluded at 7.1σ. All measurements are consistent with next-to-leading-order calculations for the tt̄W and tt̄Z processes

    Searches for Higgs boson pair production in the hh→bbττ, γγWW∗, γγbb, bbbb channels with the ATLAS detector

    Get PDF
    Searches for both resonant and nonresonant Higgs boson pair production are performed in the hh→bbττ, γγWW∗ final states using 20.3  fb−1 of pp collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. No evidence of their production is observed and 95% confidence-level upper limits on the production cross sections are set. These results are then combined with the published results of the hh→γγbb, bbbb analyses. An upper limit of 0.69 (0.47) pb on the nonresonant hh production is observed (expected), corresponding to 70 (48) times the SM gg→hh cross section. For production via narrow resonances, cross-section limits of hh production from a heavy Higgs boson decay are set as a function of the heavy Higgs boson mass. The observed (expected) limits range from 2.1 (1.1) pb at 260 GeV to 0.011 (0.018) pb at 1000 GeV. These results are interpreted in the context of two simplified scenarios of the Minimal Supersymmetric Standard Model
    • 

    corecore