343 research outputs found

    Right ventricular failure in left heart disease: from pathophysiology to clinical manifestations and prognosis

    Get PDF
    Right heart failure (RHF) is a clinical syndrome in which symptoms and signs are caused by dysfunction and/or overload of the right heart structures, predominantly the right ventricle (RV), resulting in systemic venous hypertension, peripheral oedema and finally, the impaired ability of the right heart to provide tissue perfusion. Pathogenesis of RHF includes the incompetence of the right heart to maintain systemic venous pressure sufficiently low to guarantee an optimal venous return and to preserve renal function. Virtually, all myocardial diseases involving the left heart may be responsible for RHF. This may result from coronary artery disease, hypertension, valvular heart disease, cardiomyopathies and myocarditis. The most prominent clinical signs of RHF comprise swelling of the neck veins with an elevation of jugular venous pressure and ankle oedema. As the situation worsens, fluid accumulation becomes generalised with extensive oedema of the legs, congestive hepatomegaly and eventually ascites. Diagnosis of RHF requires the presence of signs of elevated right atrial and venous pressures, including dilation of neck veins, with at least one of the following criteria: (1) compromised RV function; (2) pulmonary hypertension; (3) peripheral oedema and congestive hepatomegaly. Early recognition of RHF and identifying the underlying aetiology as well as triggering factors are crucial to treating patients and possibly reversing the clinical manifestations effectively and improving prognosis

    Exile Vol. XX No. 1

    Get PDF
    ARTWORK by Sue Sartarelli cover, 24 by Chris Schulze 5, 24, 29 by Heather Richey 6 by Katheryn Riedl 7 by Jane Joldersma 10 by Jan Mosher 12 Pat Victory 15 Rona Rosen 20, 31 Arthur Ernst 21 Kim McMullen 24 FICTION First Time by Bud Foufos 3-4 Father\u27s Last Party by Vic Coccimiglio 11 untitled by Catherine Bader 16-17 God and Sergeant Mays by J. Frank Burkhard 22 Pages of a Story by Peter Porteous 27-31 POETRY The Rest by Ezra Pound (preface) In the Midst of an Echo by Phil Mercurio 4 Sierra Madre Prose by John Purcell 5 untitled by Sue Payne 6 untitled by Cathy Graff 6 untitled by Sharon Singleton 7 Big Al by Phil Mercurio 9-10 untitled by Sharon Singleton 12 Folksinger by Alison Orleans 13 Sweat Rebellion by S. Hunt 13 Blackgrey by Laurie Wharton 14 What is she to you? by Peter Porteous 18 Pojects by Mary Mueller 21 untitled by Dawn Patnode 25 The Barn by Mary Schloss 25 PHOTOGRAPHY by Bruce Andre 1, 18 by Jane Joldersma 4, 23, 26 by Breese Olander 8 by Pam Purcell 8 by Loree Ruman 13, 14 Foster Schmidt 19 Chip Andreae 19, 23 Nancy Pickenson 26 Nancy Chorpenning 32 Many thanks to the advertising agencie -2 Pgs. 25 and 26 are out of order in the published edition and can be found between pages 8 and 9

    Echocardiographically defined haemodynamic categorization predicts prognosis in ambulatory heart failure patients treated with sacubitril/valsartan

    Get PDF
    Aim: Echo-derived haemodynamic classification, based on forward-flow and left ventricular (LV) filling pressure (LVFP) correlates, has been proposed to phenotype patients with heart failure and reduced ejection fraction (HFrEF). To assess the prognostic relevance of baseline echocardiographically defined haemodynamic profile in ambulatory HFrEF patients before starting sacubitril/valsartan. Methods and results: In our multicentre, open-label study, HFrEF outpatients were classified into 4 groups according to the combination of forward flow (cardiac index; CI:< or ≥2.0 L/min/m2 ) and early transmitral Doppler velocity/early diastolic annular velocity ratio (E/e': ≥ or <15): Profile-A: normal-flow, normal-pressure; Profile-B: low-flow, normal-pressure; Profile-C: normal-flow, high-pressure; Profile-D: low-flow, high-pressure. Patients were started on sacubitril/valsartan and followed-up for 12.3 months (median). Rates of the composite of death/HF-hospitalization were assessed by multivariable Cox proportional-hazards models. Twelve sites enrolled 727 patients (64 ± 12 year old; LVEF: 29.8 ± 6.2%). Profile-D had more comorbidities and worse renal and LV function. Target dose of sacubitril/valsartan (97/103 mg BID) was more likely reached in Profile-A (34%) than other profiles (B: 32%, C: 24%, D: 28%, P < 0.001). Event-rate (per 100 patients per year) progressively increased from Profile-A to Profile-D (12.0%, 16.4%, 22.9%, and 35.2%, respectively, P < 0.0001). By covariate-adjusted Cox model, profiles with low forward-flow (B and D) remained associated with poor outcome (P < 0.01). Adding this categorization to MAGGIC-score and natriuretic peptides, provided significant continuous net reclassification improvement (0.329; P < 0.001). Intermediate and high-dose sacubitril/valsartan reduced the event's risk independently of haemodynamic profile. Conclusions: Echocardiographically-derived haemodynamic classification identifies ambulatory HFrEF patients with different risk profiles. In real-world HFrEF outpatients, sacubitril/valsartan is effective in improving outcome across different haemodynamic profiles

    NEMO oligomerization and its ubiquitin-binding properties

    Get PDF
    The IKK [IκB (inhibitory κB) kinase] complex is a key regulatory component of NF-κB (nuclear factor κB) activation and is responsible for mediating the degradation of IκB, thereby allowing nuclear translocation of NF-κB and transcription of target genes. NEMO (NF-κB essential modulator), the regulatory subunit of the IKK complex, plays a pivotal role in this process by integrating upstream signals, in particular the recognition of polyubiquitin chains, and relaying these to the activation of IKKα and IKKβ, the catalytic subunits of the IKK complex. The oligomeric state of NEMO is controversial and the mechanism by which it regulates activation of the IKK complex is poorly understood. Using a combination of hydrodynamic techniques we now show that apo-NEMO is a highly elongated, dimeric protein that is in weak equilibrium with a tetrameric assembly. Interaction with peptides derived from IKKβ disrupts formation of the tetrameric NEMO complex, indicating that interaction with IKKα and IKKβ and tetramerization are mutually exclusive. Furthermore, we show that NEMO binds to linear di-ubiquitin with a stoichiometry of one molecule of di-ubiquitin per NEMO dimer. This stoichiometry is preserved in a construct comprising the second coiled-coil region and the leucine zipper and in one that essentially spans the full-length protein. However, our data show that at high di-ubiquitin concentrations a second weaker binding site becomes apparent, implying that two different NEMO–di-ubiquitin complexes are formed during the IKK activation process. We propose that the role of these two complexes is to provide a threshold for activation, thereby ensuring sufficient specificity during NF-κB signalling

    N-Glycosylation of ß4 Integrin Controls the Adhesion and Motility of Keratinocytes

    Get PDF
    α6ß4 integrin is an essential component of hemidesmosomes and modulates cell migration in wound healing and cancer invasion. To elucidate the role of N-glycosylation on ß4 integrin, we investigated keratinocyte adhesion and migration through the re-expression of wild-type or N-glycosylation-defective ß4 integrin (ΔNß4) in ß4 integrin null keratinocytes. N-glycosylation of ß4 integrin was not essential for the heterodimer formation of ß4 integrin with α6 integrin and its expression on a cell surface, but N-glycosylation was required for integrin-mediated cell adhesion and migration. Concomitantly with the reduction of ß4 integrin in the membrane microdomain, the intracellular signals of Akt and ERK activation were decreased in cells expressing ΔNß4 integrin. Forced cross-linking of ß4 integrin rescued the decreased ERK activation in ΔNß4 integrin-expressing cells to a similar extent in wild-type ß4 integrin-expressing cells. Surprisingly, compared with cells expressing wild-type ß4 integrin, an alternation in N-glycan structures expressed on epidermal growth factor receptor (EGFR), and the induction of a stronger association between EGFR and ß4 integrin were observed in ΔNß4 integrin-expressing cells. These results clearly demonstrated that N-glycosylation on ß4 integrin plays an essential role in keratinocyte cellular function by allowing the appropriate complex formation on cell surfaces

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    corecore