21 research outputs found

    Generation expansion planning optimisation with renewable energy integration: A review

    Get PDF
    Generation expansion planning consists of finding the optimal long-term plan for the construction of new generation capacity subject to various economic and technical constraints. It usually involves solving a large-scale, non-linear discrete and dynamic optimisation problem in a highly constrained and uncertain environment. Traditional approaches to capacity planning have focused on achieving a least-cost plan. During the last two decades however, new paradigms for expansion planning have emerged that are driven by environmental and political factors. This has resulted in the formulation of multi-criteria approaches that enable power system planners to simultaneously consider multiple and conflicting objectives in the decision-making process. More recently, the increasing integration of intermittent renewable energy sources in the grid to sustain power system decarbonisation and energy security has introduced new challenges. Such a transition spawns new dynamics pertaining to the variability and uncertainty of these generation resources in determining the best mix. In addition to ensuring adequacy of generation capacity, it is essential to consider the operational characteristics of the generation sources in the planning process. In this paper, we first review the evolution of generation expansion planning techniques in the face of more stringent environmental policies and growing uncertainty. More importantly, we highlight the emerging challenges presented by the intermittent nature of some renewable energy sources. In particular, we discuss the power supply adequacy and operational flexibility issues introduced by variable renewable sources as well as the attempts made to address them. Finally, we identify important future research directions

    Atomic spectrometry update – a review of advances in environmental analysis

    Full text link

    The cosmic microwave background anisotropy power spectrum from the BEAST experiment

    No full text
    The Background Emission Anisotropy Scanning Telescope (BEAST) is a 2.2 m off-axis telescope with an eight-element mixed Q-band (38-45 GHz) and Ka-band (26-36 GHz) focal plane, designed for balloon-borne and ground-based studies of the cosmic microwave background (CMB). Here we present the CMB angular power spectrum calculated from 682 hr of data observed with the BEAST instrument. We use a binned pseudo-C-l estimator (the MASTER method). We find results that are consistent with other determinations of the CMB anisotropy for angular wavenumbers l between 100 and 600. We also perform cosmological parameter estimation. The BEAST data alone produce a good constraint on Omega(k) = 1 - Omega(tot) = 0.074 +/- 0.070, consistent with a flat universe. A joint parameter estimation analysis with a number of previous CMB experiments produces results consistent with previous determinations

    The optical design of the Background Emission Anisotropy Scanning Telescope (BEAST)

    No full text
    We present the optical design of the Background Emission Anisotropy Scanning Telescope (BEAST), an off-axis Gregorian telescope designed to measure the angular distribution of the cosmic microwave background radiation (CMBR) at 30 and 41.5 GHz on angular scales ranging from 20' to 10\ub0. The aperture of the telescope is 1.9 m, and our design meets the strict requirements imposed by the scientific goals of the mission: the beam size is 20' at 41.5 GHz and 26' at 30 GHz, while the illumination at the edge of the mirrors is lower than -30 dB for the central horn. The primary mirror is an off-axis section of a paraboloid, and the secondary an off-axis section of an ellipsoid. A spinning flat mirror located between the sky and the primary provides a two-dimensional chop by rotating the beams around an ellipse on the sky. BEAST uses a receiver array of cryogenic low noise InP High Electron Mobility Transistor (HEMT) amplifiers. The baseline array has seven horns matched to one amplifier each and one horn matched to two amplifiers (two polarizations) for a total of nine amplifiers. Two horns operate around 30 GHz, and six operate around 41.5 GHz. Subsequent campaigns will include 90 GHz and higher frequency channels

    The Cosmic Microwave Background Anisotropy Power Spectrum from the BEAST Experiment

    No full text
    The Background Emission Anisotropy Scanning Telescope (BEAST) is a 2.2 m off-axis telescope with an eight-element mixed Q-band (38-45 GHz) and Ka-band (26-36 GHz) focal plane, designed for balloon-borne and ground-based studies of the cosmic microwave background (CMB). Here we present the CMB angular power spectrum calculated from 682 hr of data observed with the BEAST instrument. We use a binned pseudo-C-l estimator (the MASTER method). We find results that are consistent with other determinations of the CMB anisotropy for angular wavenumbers l between 100 and 600. We also perform cosmological parameter estimation. The BEAST data alone produce a good constraint on Omega(k) = 1 - Omega(tot) = 0.074 +/- 0.070, consistent with a flat universe. A joint parameter estimation analysis with a number of previous CMB experiments produces results consistent with previous determinations
    corecore