223 research outputs found

    The use of neighbourhood intensity comparisons, morphological gradients and Fourier analysis for automated precipitate counting & Pendell¨osung fringe analysis in X-ray topography

    Get PDF
    Crystal distortions modify the propagation of X-rays in single crystal materials, and X-ray topography can be used to record these modifications on a film thus providing images of the distributions and nature of defects, dislocations, strains, precipitates, etc. in semiconductors. Small variations of contrast, which often need to be analysed can be rendered invisible. Furthermore, artefacts in the films must be removed. This study examines the use of advanced image analysis techniques applied to a selection of X-ray topographs in section transmission mode: (i) the automated counting of oxygen-related precipitates and (ii) the enhancement of Pendell¨osung fringes. The technique also succeeds in removing unwanted features in the original x-ray topographs such as vertical streaking due to collimating slit phase contrast and strain features near the surface due to the presence of integrated circuit process strains

    Cancer in the offspring of female radiation workers: a record linkage study

    Get PDF
    This study uses record linkage between the National Registry of Childhood Tumours (NRCT) and the National Registry for Radiation Workers to re-assess our earlier finding that the offspring of women radiation workers exposed to ionising radiation before the child's conception may be at an increased risk of childhood cancer. An additional 16 964 childhood cancer patients taken from the NRCT, together with the same number of matched controls, are included. Pooled analyses, based on the new and original datasets, include 52 612 cases and their matched controls. Relative risks (RRs) for maternal employment as a radiation worker, maternal exposure or not during the relevant pregnancy and pattern of employment relative to conception and diagnosis dates were calculated

    Conditionally Replicating Adenovirus Expressing TIMP2 Increases Survival in a Mouse Model of Disseminated Ovarian Cancer

    Get PDF
    Ovarian cancer remains difficult to treat mainly due to presentation of the disease at an advanced stage. Conditionally-replicating adenoviruses (CRAds) are promising anti-cancer agents that selectively kill the tumor cells. The present study evaluated the efficacy of a novel CRAd (Ad5/3-CXCR4-TIMP2) containing the CXCR4 promoter for selective viral replication in cancer cells together with TIMP2 as a therapeutic transgene, targeting the matrix metalloproteases (MMPs) in a murine orthotopic model of disseminated ovarian cancer. An orthotopic model of ovarian cancer was established in athymic nude mice by intraperitonal injection of the human ovarian cancer cell line, SKOV3-Luc, expressing luciferase. Upon confirmation of peritoneal dissemination of the cells by non-invasive imaging, mice were randomly divided into four treatment groups: PBS, Ad-ΔE1-TIMP2, Ad5/3-CXCR4, and Ad5/3-CXCR4-TIMP2. All mice were imaged weekly to monitor tumor growth and were sacrificed upon reaching any of the predefined endpoints, including high tumor burden and significant weight loss along with clinical evidence of pain and distress. Survival analysis was performed using the Log-rank test. The median survival for the PBS cohort was 33 days; for Ad-ΔE1-TIMP2, 39 days; for Ad5/3-CXCR4, 52.5 days; and for Ad5/3-CXCR4-TIMP2, 63 days. The TIMP2-armed CRAd delayed tumor growth and significantly increased survival when compared to the unarmed CRAd. This therapeutic effect was confirmed to be mediated through inhibition of MMP9. Results of the in vivo study support the translational potential of Ad5/3-CXCR4-TIMP2 for treatment of human patients with advanced ovarian cancer

    Dark Matter Neutrino Scattering in the Galactic Centre with IceCube

    Get PDF
    While there is evidence for the existence of dark matter, its properties have yet to be discovered. Simultaneously, the nature of high-energy astrophysical neutrinos detected by IceCube remains unresolved. If dark matter and neutrinos are coupled to each other, they may exhibit a non-zero elastic scattering cross section. Such an interaction between an isotropic extragalactic neutrino flux and dark matter would be concentrated in the Galactic Centre, where the dark matter column density is greatest. This scattering would attenuate the flux of high-energy neutrinos, which could be observed in IceCube. Using the seven-year Medium Energy Starting Events sample, we perform an unbinned likelihood analysis, searching for a signal based on a possible DM-neutrino interaction scenario. We search for a suppression of the high-energy astrophysical neutrino flux in the direction of the Galactic Centre, and compare these constraints to complementary low-energy information from large scale structure surveys and the cosmic microwave background

    Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube

    Get PDF
    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10210^{-2}\,M_\odotc2^2 at 150\sim 150\,Hz with 60\sim 60\,ms duration, and high-energy neutrino emission of 105110^{51}\,erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6×1021.6 \times 10^{-2}\,Mpc3^{-3}yr1^{-1}. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era

    Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS

    Get PDF
    The realtime follow-up of neutrino events is a promising approach to searchfor astrophysical neutrino sources. It has so far provided compelling evidencefor a neutrino point source: the flaring gamma-ray blazar TXS 0506+056 observedin coincidence with the high-energy neutrino IceCube-170922A detected byIceCube. The detection of very-high-energy gamma rays (VHE, E>100GeV\mathrm{E} >100\,\mathrm{GeV}) from this source helped establish the coincidence andconstrained the modeling of the blazar emission at the time of the IceCubeevent. The four major imaging atmospheric Cherenkov telescope arrays (IACTs) -FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program oftarget-of-opportunity observations of neutrino alerts sent by IceCube. Thisprogram has two main components. One are the observations of known gamma-raysources around which a cluster of candidate neutrino events has been identifiedby IceCube (Gamma-ray Follow-Up, GFU). Second one is the follow-up of singlehigh-energy neutrino candidate events of potential astrophysical origin such asIceCube-170922A. GFU has been recently upgraded by IceCube in collaborationwith the IACT groups. We present here recent results from the IACT follow-upprograms of IceCube neutrino alerts and a description of the upgraded IceCubeGFU system.<br

    Quite a few reasons for calling carnivores "the most wonderful plants in the world"

    Get PDF
    A plant is considered carnivorous if it receives any noticeable benefit from catching small animals. The morphological and physiological adaptations to carnivorous existence is most complex in plants, thanks to which carnivorous plants have been cited by Darwin as ‘the most wonderful plants in the world’. When considering the range of these adaptations, one realizes that the carnivory is a result of a multitude of different features. Scope: This review discusses a selection of relevant articles, culled from a wide array of research topics on plant carnivory, and focuses in particular on physiological processes associated with active trapping and digestion of prey. Carnivory offers the plants special advantages in habitats where nutrient supply is scarce. Counterbalancing costs are the investments in synthesis and the maintenance of trapping organs and hydrolysing enzymes. With the progress in genetic, molecular and microscopic techniques, we are well on the way to a full appreciation of various aspects of plant carnivory. Conclusions: Sufficiently complex to be of scientific interest and finite enough to allow conclusive appraisal, carnivorous plants can be viewed as unique models for the examination of rapid organ movements, plant excitability, enzyme secretion, nutrient absorption, food-web relationships, phylogenetic and intergeneric relationships or structural and mineral investment in carnivory

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
    corecore