1,957 research outputs found

    Tropical intercontinental disjunctions

    Get PDF

    Giant lobelias exemplify convergent evolution

    Get PDF
    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution

    The effect of population density on shoot morphology of herbs in relation to light capture by leaves

    Get PDF
    Plants change their shapes, depending on their environment, for example, plant height increases with increasing population density. We examined the density-dependent plasticity in shoot morphology of herbs by analysing a mathematical model which identifies a number of key factors that influence shoot morphology, namely (i) solar radiation captured by leaves; (ii) shading from neighbouring plants; and (iii) utilisation efficiency of resource by leaves, stems and veins. An optimisation theory was used to obtain optimal shoot morphology in relation to maximal light capture by leaves, under trade-offs of resource partition among organs. We first evaluated the solar radiation flux per unit leaf area per day for different shoot forms. Our model predicts that the optimal internodal length of the stem that brings about the maximal light capture by leaves increases with plant population density, and this is consistent with experimental data. Moreover, our simple model can also be extended to explain the morphological plasticity in other herbs (i.e. stemless plants) that are different from our model plants with a stem. These findings illustrate how optimisation theory can be used for the analysis of plasticity in shoot morphology of plants in response to environmental changes, as well as the analysis of diversity in morphology

    Adaptation to Sun and Shade: a Whole-Plant Perspective

    Full text link

    Convergent evolution of an ant-plant mutualism across plant families, continents and time

    Get PDF
    Questions: How often has dispersal of seeds by ants evolved in monocots and is the timing of origins associated with changes in the ant community or instead with the rise of forests? Are patterns in the origin of elaiosomes (the trait associated with the dispersal of seeds by ants) through time similar to those for the origins of fleshy fruits? Data studied: We estimate the timing of the origin of elaiosomes and fleshy fruits respectivelyby mapping seed morphology onto a recent phylogeny based on ndhF sequence data forthe monocots (Givnish et al., 2005). For comparison, we use fossil data on ant relativeabundance through time and phylogenetic data for the timing of the origin of seed-dispersing ant lineages. Search method: We mapped origins of both elaiosomes and fleshy fruits onto the phylogenyusing parsimony in the program Mesquite (Maddison and Maddison, 2005). We analysed therelationship between ant relative abundances, the number of origins of seed-dispersing ants, and the rate of origination of elaiosomes using randomization-based Monte Carlo regression in the program R (Cliff and Ord, 1981). Using the program Discrete (Pagel, 2006), we test whether fleshy fruits or elaiosomes and shaded forest understoreys show correlated evolution.Conclusions: Morphological features for the dispersal of seeds by ants (myrmecochory) have evolved at least twenty times within the monocots. Origins of myrmecochory are not associated with the rise of forests during the Cretaceous or with subsequent transitions of plant lineages into closed canopy habitats, nor are they contemporaneous with the origins of fleshy fruits. Instead, the origins of myrmecochory are closely associated with the rise in relative abundanceof ants (proportion of all individual insects in fossils) towards the end of the Eocene and more recently

    Phylogeny, Adaptive Radiation, and Historical Biogeography of Bromeliaceae Inferred from ndhF Sequence Data

    Get PDF
    Cladistic analysis of ndhF sequences identifies eight major bromeliad clades arranged in ladderlike fashion. The traditional subfamilies Tillandsioideae and Bromelioideae are monophyletic, but Pitcairnioideae are paraphyletic, requiring the description of four new subfamilies, recircumscription of Pitcairnioideae and Navioideae, the sinking of Ayensua, and description of the new genus Sequencia. Brocchinioideae are basalmost, followed by Lindmanioideae, both restricted to the Guayana Shield. Next is an unresolved trichotomy involving Hechtioideae from Central America, Tillandsioideae, and the remaining bromeliads in subfamilies Navioideae, Pitcairnioideae, Puyoideae, and Bromelioideae. Bromeliads arose as C3 terrestrial plants on moist infertile sites in the Guayana Shield roughly 70 Mya, spread centripetally in the New World, and reached tropical West Africa (Pitcairnia feliciana) via long-distance dispersal about 10 Mya. Modern lineages began to diverge from each other 19 Mya and invaded drier areas in Central and South America beginning 15 Mya, coincident with a major adaptive radiation involving the repeated evolution of epiphytism, CAM photosynthesis, impounding leaves, several features of leaf/trichome anatomy, and accelerated diversification at the generic level. This ‘‘bromeliad revolution’’ occurred after the uplift of the northern Andes and shift of the Amazon to its present course. Epiphytism may have accelerated speciation by increasing ability to colonize along the length of the Andes, while favoring the occupation of a cloud-forest landscape frequently dissected by drier valleys. Avian pollination (mainly by hummingbirds) evolved at least twice ca. 13 Mya; entomophily was ancestral. Hechtia, Abromeitiella–Deuterocohnia–Dyckia–Encholirium, and Puya exhibit a remarkable pattern of concerted convergence in six anatomical and physiological leaf traits adapted to drought

    Thorn-Like Prickles and Heterophylly in \u3cem\u3eCyanea\u3c/em\u3e: Adaptations to Extinct Avian Browsers on Hawaii?

    Get PDF
    The evolution of thorn-like structures in plants on oceanic islands that lack mammalian and reptilian herbivores is puzzling, as is their tendency toward juvenile-adult leaf dimorphism. We propose that these traits arose in Cyanea (Campanul) on Hawaii as mechanical and visual defenses against herbivory by flightless geese and goose-like ducks that were extirpated by Polynesians within the last 1600 years. A chloroplast DNA phylogeny indicates that thorn-like prickles evolved at least four times and leaf dimorphism at least three times during the last 3.7 million years. The incidence of both traits increases from Oahu eastward toward younger islands, paralleling the distribution of avian species apparently adapted for browsing. The effectiveness of visual defenses against avian browsers (once dominant on many oceanic islands, based on the vagility of their ancestors) may provide a general explanation for insular heterophylly: the other islands on which this previously unexplained phenomenon is marked (New Zealand, New Caledonia, Madagascar, Mascarene Islands) are exactly those on which one or more large flightless avian browsers evolved

    Kin recognition in an annual plant

    Get PDF
    Kin recognition is important in animal social systems. However, though plants often compete with kin, there has been as yet no direct evidence that plants recognize kin in competitive interactions. Here we show in the annual plant Cakile edentula, allocation to roots increased when groups of strangers shared a common pot, but not when groups of siblings shared a pot. Our results demonstrate that plants can discriminate kin in competitive interactions and indicate that the root interactions may provide the cue for kin recognition. Because greater root allocation is argued to increase below-ground competitive ability, the results are consistent with kin selection

    Determinants of maximum tree height in Eucalyptus species along a rainfall gradient in Victoria, Australia

    Get PDF
    We present a conceptual model linking dry-mass allocational allometry, hydraulic limitation, and vertical stratification of environmental conditions to patterns in vertical tree growth and tree height. Maximum tree height should increase with relative moisture supply and both should drive variation in apparent stomatal limitation. Carbon isotope discrimination (δ) should not vary with maximum tree height across a moisture gradient when only hydraulic limitation or allocational allometry limit height, but increase with moisture when both hydraulic limitation and allocational allometry limit maximum tree height. We quantified tree height and D along a gradient in annual precipitation from 300 to 1600 mm from mallee to temperate rain forest in southeastern Australia; Eucalyptus on this gradient span almost the entire range of tree heights found in angiosperms worldwide. Maximum tree height showed a strong, nearly proportional relationship to the ratio of precipitation to pan evaporation. D increased with ln P/Ep, suggesting that both hydraulic limitation and allocational allometry set maximum tree height. Coordinated shifts in several plant traits should result in different species having an advantage in vertical growth rate at different points along a rainfall gradient, and in maximum tree height increasing with relative moisture supply, photosynthetic rate, nutrient supply, and xylem diameter
    corecore