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Dark Matter Neutrino Scattering

1. Introduction

Over the last century the presence of dark matter (DM) has been implied by numerous obser-
vations of its gravitational effects, however, it has yet to be detected. Despite this lack of a signal,
some information about DM can be gleaned by ruling out various theorized models and constrain-
ing parameters. These searches involve exploring possible interactions between DM and Standard
Model particles and are typically directed towards areas where a large signal can be expected, such
as the Galactic Centre. As most past searches for DM have considered interactions with quarks
or electrons, DM-neutrino interactions are one of the least explored connections of DM with the
Standard Model. DM-neutrino models are especially attractive for light DM, where annihilation
into heavier products is forbidden and appears naturally in cases like the sterile neutrino. The elastic
scattering of DM and neutrinos has been constrained for the Early Universe at low energies [1–3].
Limits on the DM-neutrino scattering have also been found for the high energies of IceCube, but
have been hindered by a lack of observational data [4]. Searching for interactions at the high
energies observed at IceCube is important as the scattering cross section scales with energy. This
analysis considers a DM-neutrino scattering interaction that would be concentrated in the Galactic
Centre and would lead to an energy dependent shadow in the astrophysical neutrino flux that could
be observed by IceCube.

2. Dark Matter-Neutrino Scattering

2.1 Cascade Equation

The main idea of this research is that extragalactic neutrinos travelling towards the Earth will
scatter with the diffuse DM halo of the Milky Way. This will cause changes in the neutrino flux
that are described by the cascade equation:

3Φ(�, g)
3g

= −f(�)Φ(�, g) +
∫ ∞

�

3�̃
3f(�̃ , �)

3�
Φ(�̃ , g), (1)

where Φ is the neutrino flux, �̃ is the incoming neutrino energy, � is the outgoing neutrino energy,
g is the DM column density, and f is the scattering cross section from [5]. The first term accounts
for losses due to scattering interactions, while the second term accounts for the addition of neutrinos
scattering from higher energies to lower energies [6]. The column density describes the amount of
DM along the line of sight to the neutrino source:

g(®G) =
∫
;.>.B

=j (®G)3G, (2)

where =j =
dj

<j
is for a NFW profile [7]:

dj (A) =
d0(

A
AB

) [
1 + A

AB

]2 , (3)

for a DM density dj at radius A , d0 = 0.4 GeV/cm−3 is the local DM density, and AB = 26 kpc is the
scale radius of the halo. These parameters were constrained by Benito et al. [8, 9].
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Figure 1: a) Survival probability for a neutrino flux across energy and angle to the Galactic Centre. Here
6 = 1, <q = 10 MeV, <j = 1 GeV. The low energy (≤ 20 TeV) part of the neutrino flux is completely
attenuated by DM-neutrino scatter, while the high energy (≤ 500 TeV) is unaffected. b) Skymap of the
survival probability for the astrophysical neutrino flux. This is for the scalar mediator-scalar DM scenario
with 6 = 1, <q = 106 MeV, <j = 1 GeV at �a =1 PeV.

The code that is used to solve the cascade equation is based on nuFATE [6], which was
designed to efficiently model the attenuation of neutrinos passing through the Earth. This is done
by vectorizing the cascade equation so it can be solved as an eigenvalue problem.

Since the likelihood of a scattering interaction is proportional to the column density, a greater
scattering effect should be expected at the Galactic Centre. This scattering effect would attenuate
the high energy neutrino flux as the neutrinos lose energy. Fig. 1 shows the skymap of the flux
survival probability where the astrophysical neutrino flux would be expected to be reduced at the
Galactic Centre. This survival probability across energy and angle to the Galactic Centre is shown
in Fig. 1. For this specific example of a scalar DM and scalar mediator model (as described in [5])
there is a noticeable attenuation for energies below 1 PeV. There is also a gradient in attenuation
where l.o.s angles closer to the Galactic Centre (smaller) lead to lower survival probability for any
given energy.

3. Method

This analysis aimed to set sensitivities in searches for an energy dependent deficit in the
isotropic extra-galactic neutrino flux at the Galactic Centre from DM neutrino elastic scattering.
This is done using an unbinned likelihood analysis with simulated IceCube data that is sampled with
an Markov Chain Monte Carlo (MCMC) algorithm. This involves determining an expected signal
by combining a DM and background hypothesis which is compared with a simulated dataset. The
simulated dataset is constructed by randomly selecting events from the Monte Carlo simulation.
This likelihood is then explored using a MCMC algorithm to constrain the upper limits on DM
parameters and allow the nuisance parameters to be included as free parameters.
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3.1 Likelihood

The likelihood function was composed of hypothesis parameters for the DM contribution: ®\ =
{6, <q, <j}, nuisance parameters for modeling the background: ®[ = {W, q0BCA>,ΔW, q0C<, q<D>=}
and observable parameters as reconstructed at IceCube: ®GA42> = {log10(�a), U, sin(X)}. Here<j is
the DMmass, <q is the mediator mass, and 6 is the coupling strength. For the nuisance parameters
W is the spectral index of the astrophysical flux, q0BCA>, q0C<, q<D>= are the normalizations of the
astrophysical, atmospheric and muon fluxes, ΔW is the spectral hardening/softening parameter for
the atmospheric flux respectively. The observable parameters at IceCube are energy log10 �a , right
ascension U and the declination sin(X). The likelihood of a DM hypothesis, ®\, given the data, ®G and
including nuisance parameters, ®[ is:

L( ®\, ®[; {®G ∈ dataset}) = 4
−_( ®\, ®[)_: ( ®\, ®[)

:!

:∏
8

5 (®G8 , ®\, ®[). (4)

The likelihood is composed of a Poisson normalization for the whole dataset and a product over
the likelihoods for each individual event, 8, in the dataset. Here the likelihood for each individual
event, 5 (®G8 , ®\, ®[), includes shape effects across the physical observables ®G = {�a , U, X} as well the
weights to account for the detector properties:

5 (®G8 , ®\, ®[) =
#0BCA>%0BCA>

8
+ #0C<%0C<

8
+ #<D>=%<D>=

8

#0BCA> + #0C< + #<D>= , (5)

where #0BCA>, #0C<, and #<D>= are the number of expected astrophysical neutrinos, atmospheric
neutrinos, and atmospheric muons respectively and %0BCA>

8
, %0C<
8

, and %<D>=
8

are the probability
distributions for an individual event; these numbers are determined from the flux assumptions of
the hypothesis. The number of expected events are found by integrating the weighted flux across
energy, � :

# (®G8 , ®\, ®[) =
∫

32Φ

3�3Ω
(� 9 , U 9 , X 9 ; ®\, ®[ 9)

!

6( ®[ 9)
3� (6)

where 32Φ
3�3Ω

(� 9 , U 9 , X 9 ; ®\, ®[ 9) is the neutrino flux associated with each source and !
6 ( ®[ 9 ) represents

a weight factor that incorporates the detector properties including livetime !, and a generation
bias, 1/6( ®[). This bias factor accounts for spectral, direction, oversampling and other biases. The
probability % associated with each source is constructed from the Monte Carlo simulated dataset.
These probability density functions are evaluated for the observables ®G8 for each observed event 8:

%(®G8 , ®\, ®[) =
∑
9

 (®G8 − ®G 9)
32Φ

3�3Ω
(� 9 , U 9 , X 9 ; ®\, ®[ 9)

!

6( ®[ 9)
(7)

where  is the kernel density estimate function that is used to smooth the probability distribution.
This probability function is constructed from the Monte Carlo simulation containing 9 events.

3.2 Neutrino Background Models

The neutrino background of expected events was modelled using a Monte Carlo simulation
from NuGen for the astrophysical neutrinos, atmopsheric neutrinos and atmospheric muons [10].
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3.2.1 Astrophysical Sources

The astrophysical component of the neutrinos observed at IceCube is affected by DM-neutrino
scattering. This analysis assumes an isotropic distribution of events from a large number of extra-
galactic sources. It is also assumed that the energy spectrum of the neutrino flux 3Φ

3�a
follows a

power law:
3Φ0BCA>

3�a
= q0BCA>

(
�a

100 TeV

)−W
× 10−18 GeV−1cm−2s−1sr−1, (8)

for neutrino energy �a , a spectral index of W and flux normalization constant q0BCA> at 100 TeV.

3.2.2 Atmospheric Neutrinos

Atmospheric neutrinos constitute a significant background at IceCube for energies up to 100
TeV. They are produced when cosmic rays interact with the Earth’s atmosphere to produce mesons
that decay to neutrinos. The atmospheric neutrino flux model is described by [11]:

Φ0C< = q0C<F��

(
�a

�0

)ΔW
, (9)

where q0C< is the overall normalization of the atmospheric flux, F�� is the Honda-Gaisser
weighting from nuFlux that only includes the conventional component, and ΔW is a spectral
hardening/softening factor, which has a pivot point at �0 [12]. These are adjusted with nuVeto to
account for the starting events veto technique [13].

3.2.3 Atmospheric Muons

The events detected at IceCube are dominated by cosmic ray muons. For every neutrino
detected in IceCube, 106 muons interact in the detector. These are produced in air showers when
cosmic rays interact in the atmosphere [14].

4. Sensitivities

The case of a scalar DM and scalar mediator model was considered to determine sensitivities
on the neutrino DM interaction as observed at IceCube. The marginalized posterior probabilities
from emcee [15] are shown in Fig. 2. The coloured areas signify allowed parameter values, with
the dark shading for 68% credible regions and the light shading for 95% credible regions. The
preference for low mass mediators is found with high mediator masses being excluded. The DM
mass is also found to prefer high DM masses up to about GeV, where the posterior drops off. This
is expected for a light scalar DM scenario [16]. The best-fit values from emcee are consistent
with the null hypothesis indicating that a signal from DM-neutrino is not expected above a certain
cross section. As such, sensitives for the upper limits that can be achieved with the medium energy
starting events-cascades (MESE-C) dataset can be obtained.

The maximum coupling constant that is allowed under the simulated dataset is plotted in
Fig 3a and compared to cosmology. Above the line IceCube is more sensitive, while below the
line cosmology is more sensitive to constraining the coupling constant. It can be seen that across
a range of DM masses and for high mediator masses (<q & 10−6), IceCube is more sensitive in
constraining the maximum coupling for a DM-neutrino scattering scenario.

5
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Figure 2: The posterior probability distribution for the DM parameters as sampled by emcee.
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Figure 3: a) The maximum coupling constant that is expected to be allowed by IceCube. Above the line
constraints from IceCube are more stringent, while below the line those from cosmology dominate. b) The
upper limit on the sensitivity for a neutrino-DM cross section is shown in black across DM mass. Also
plotted are the DM-electron and DM-nucleon scattering cross section limits from SENSEI, XENON1T and
XENON10 as presented in Ref: [17]. Since the cross section is energy dependent, this is plotted for a neutrino
energy of 46 TeV.

The cross section limits from IceCube can be plotted by marginalizing over the nuisance
parameters and making the appropriate transformations on the prior space. The sensitivities
obtained are shown in Fig. 3b, where the upper limit that is expected at IceCube is shown by
the black line. The constraints on DM-electron and DM-nucleon scattering cross section from the
SENSEI and XENON experiments are also shown by the yellow and blue regions respectively for
a comparison [17].
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This leads to sensitivities at IceCube being set as:

fa−�" . 10−27
( <j
GeV

) (
�a

PeV

)−2
cm2. (10)

For this particular scalar DM-scalar mediator model these sensitivities mark the first limits that can
be placed at high neutrino energies. The sensitivity of IceCube was found to be similar to that of
cosmology, however, in the high mediator mass range, IceCube can provide stronger constraints on
a possible DM-neutrino coupling.

5. Conclusion

The nature of dark matter is one of the greatest unsolved problems in physics. While its
gravitational effects have been observed, DM has yet to be detected. In this proceeding the elastic
scattering interaction between dark matter and neutrinos was explored. These interactions would be
expected to occur in areas where neutrinos pass through large column densities of dark matter, such
as in the dark matter halo at the centre of the Milky Way. This would lead to an attenuation of the
extragalactic flux that could be observed at the IceCube Neutrino Observatory. Sensitivities were
obtained by performing an unbinned likelihood analysis with the MESE-C data. This incorporated
models for the backgrounds observed at IceCube, the DM halo of the Milky Way and the new
physics of a DM-neutrino scattering interaction. The likelihood was sampled using a MCMC and
the sensitivity for the DM-neutrino cross section of a scalar dark matter-scalar mediator model was

set as: fa−�" . 10−27
(
<j

GeV

) (
�a

PeV

)−2
cm2. This marks the first limits that are set at the high

neutrino energies observed in IceCube for the scalar-scalar model. Furthermore, it was shown that
IceCube is more sensitive than cosmology in setting constraints on the coupling strength for dark
matter-neutrino scattering for certain regions of the parameter space.

7
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Naumann58, J. Necker59, L. V. Nguyễn24, H. Niederhausen27, M. U. Nisa24, S. C. Nowicki24, D. R. Nygren9, A. Obertacke Pollmann58,
M. Oehler31, A. Olivas19, E. O’Sullivan57, H. Pandya42, D. V. Pankova56, N. Park33, G. K. Parker4, E. N. Paudel42, L. Paul40, C.
Pérez de los Heros57, L. Peters1, J. Peterson38, S. Philippen1, D. Pieloth23, S. Pieper58, M. Pittermann32, A. Pizzuto38, M. Plum40, Y.
Popovych39, A. Porcelli29, M. Prado Rodriguez38, P. B. Price8, B. Pries24, G. T. Przybylski9, C. Raab12, A. Raissi18, M. Rameez22, K.
Rawlins3, I. C. Rea27, A. Rehman42, P. Reichherzer11, R. Reimann1, G. Renzi12, E. Resconi27, S. Reusch59, W. Rhode23, M. Richman45,
B. Riedel38, E. J. Roberts2, S. Robertson8, 9, G. Roellinghoff52, M. Rongen39, C. Rott49, 52, T. Ruhe23, D. Ryckbosch29, D. Rysewyk
Cantu24, I. Safa14, 38, J. Saffer32, S. E. Sanchez Herrera24, A. Sandrock23, J. Sandroos39, M. Santander54, S. Sarkar44, S. Sarkar25, K.
Satalecka59, M. Scharf1, M. Schaufel1, H. Schieler31, S. Schindler26, P. Schlunder23, T. Schmidt19, A. Schneider38, J. Schneider26, F.
G. Schröder31, 42, L. Schumacher27, G. Schwefer1, S. Sclafani45, D. Seckel42, S. Seunarine47, A. Sharma57, S. Shefali32, M. Silva38,
B. Skrzypek14, B. Smithers4, R. Snihur38, J. Soedingrekso23, D. Soldin42, C. Spannfellner27, G. M. Spiczak47, C. Spiering59, 61, J.
Stachurska59, M. Stamatikos21, T. Stanev42, R. Stein59, J. Stettner1, A. Steuer39, T. Stezelberger9, T. Stürwald58, T. Stuttard22, G. W.
Sullivan19, I. Taboada6, F. Tenholt11, S. Ter-Antonyan7, S. Tilav42, F. Tischbein1, K. Tollefson24, L. Tomankova11, C. Tönnis53, S.
Toscano12, D. Tosi38, A. Trettin59, M. Tselengidou26, C. F. Tung6, A. Turcati27, R. Turcotte31, C. F. Turley56, J. P. Twagirayezu24, B.
Ty38, M. A. Unland Elorrieta41, N. Valtonen-Mattila57, J. Vandenbroucke38, N. van Eĳndhoven13, D. Vannerom15, J. van Santen59, S.
Verpoest29, M. Vraeghe29, C. Walck50, T. B. Watson4, C. Weaver24, P. Weigel15, A. Weindl31, M. J. Weiss56, J. Weldert39, C. Wendt38,
J. Werthebach23, M. Weyrauch32, N. Whitehorn24, 35, C. H. Wiebusch1, D. R. Williams54, M. Wolf27, K. Woschnagg8, G. Wrede26, J.
Wulff11, X. W. Xu7, Y. Xu51, J. P. Yanez25, S. Yoshida16, S. Yu24, T. Yuan38, Z. Zhang51

1 III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
2 Department of Physics, University of Adelaide, Adelaide, 5005, Australia
3 Dept. of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
4 Dept. of Physics, University of Texas at Arlington, 502 Yates St., Science Hall Rm 108, Box 19059, Arlington, TX 76019, USA
5 CTSPS, Clark-Atlanta University, Atlanta, GA 30314, USA
6 School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA
7 Dept. of Physics, Southern University, Baton Rouge, LA 70813, USA
8 Dept. of Physics, University of California, Berkeley, CA 94720, USA
9 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
10 Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
11 Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
12 Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
13 Vrĳe Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
14 Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA
15 Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

9



P
o
S
(
I
C
R
C
2
0
2
1
)
5
6
9

Dark Matter Neutrino Scattering

16 Dept. of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan
17 Department of Physics, Loyola University Chicago, Chicago, IL 60660, USA
18 Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
19 Dept. of Physics, University of Maryland, College Park, MD 20742, USA
20 Dept. of Astronomy, Ohio State University, Columbus, OH 43210, USA
21 Dept. of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA
22 Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
23 Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany
24 Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
25 Dept. of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
26 Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
27 Physik-department, Technische Universität München, D-85748 Garching, Germany
28 Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland
29 Dept. of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium
30 Dept. of Physics and Astronomy, University of California, Irvine, CA 92697, USA
31 Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany
32 Karlsruhe Institute of Technology, Institute of Experimental Particle Physics, D-76021 Karlsruhe, Germany
33 Dept. of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston, ON K7L 3N6, Canada
34 Dept. of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
35 Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095, USA
36 Department of Physics, Mercer University, Macon, GA 31207-0001, USA
37 Dept. of Astronomy, University of Wisconsin–Madison, Madison, WI 53706, USA
38 Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin–Madison, Madison, WI 53706, USA
39 Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
40 Department of Physics, Marquette University, Milwaukee, WI, 53201, USA
41 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
42 Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
43 Dept. of Physics, Yale University, New Haven, CT 06520, USA
44 Dept. of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
45 Dept. of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
46 Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
47 Dept. of Physics, University of Wisconsin, River Falls, WI 54022, USA
48 Dept. of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
49 Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
50 Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm, Sweden
51 Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA
52 Dept. of Physics, Sungkyunkwan University, Suwon 16419, Korea
53 Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Korea
54 Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
55 Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA
56 Dept. of Physics, Pennsylvania State University, University Park, PA 16802, USA
57 Dept. of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
58 Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany
59 DESY, D-15738 Zeuthen, Germany
60 Università di Padova, I-35131 Padova, Italy
61 National Research Nuclear University, Moscow Engineering Physics Institute (MEPhI), Moscow 115409, Russia
62 Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo 113-0032, Japan

Acknowledgements
USA – U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, U.S. Na-
tional Science Foundation-EPSCoR, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the
University of Wisconsin–Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE),
Frontera computing project at the Texas Advanced Computing Center, U.S. Department of Energy-National Energy Research Scientific
Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research
at Michigan State University, and Astroparticle physics computational facility at Marquette University; Belgium – Funds for Scientific
Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo);
Germany – Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for
Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY),
and High Performance Computing cluster of the RWTH Aachen; Sweden – Swedish Research Council, Swedish Polar Research Sec-
retariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia – Australian

10



P
o
S
(
I
C
R
C
2
0
2
1
)
5
6
9

Dark Matter Neutrino Scattering

Research Council; Canada – Natural Sciences and Engineering Research Council of Canada, Calcul Québec, Compute Ontario, Canada
Foundation for Innovation, WestGrid, and Compute Canada; Denmark – Villum Fonden and Carlsberg Foundation; New Zealand –
Marsden Fund; Japan – Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba
University; Korea – National Research Foundation of Korea (NRF); Switzerland – Swiss National Science Foundation (SNSF); United
Kingdom – Department of Physics, University of Oxford.

11


	Introduction
	Dark Matter-Neutrino Scattering
	Cascade Equation

	Method
	Likelihood
	Neutrino Background Models
	Astrophysical Sources
	Atmospheric Neutrinos
	Atmospheric Muons


	Sensitivities
	Conclusion

