63 research outputs found

    TV white space and LTE network optimization toward energy efficiency in suburban and rural scenarios

    Get PDF
    The radio spectrum is a limited resource. Demand for wireless communication services is increasing exponentially, stressing the availability of radio spectrum to accommodate new services. TV white space (TVWS) technologies allow a dynamic usage of the spectrum. These technologies provide wireless connectivity, in the channels of the very high frequency and ultra high frequency television broadcasting bands. In this paper, we investigate and compare the coverage range, network capacity, and network energy efficiency for TVWS technologies and LTE. We consider Ghent, Belgium, and Boyeros, Havana, Cuba, to evaluate a realistic outdoor suburban and rural area, respectively. The comparison shows that TVWS networks have an energy efficiency 9-12 times higher than LTE networks

    Multi-objective optimization of cognitive radio networks

    Get PDF
    New generation networks, based on Cognitive Radio technology, allow dynamic allocation of the spectrum, alleviating spectrum scarcity. These networks also have a resilient potential for dynamic operation for energy saving. In this paper, we present a novel wireless network optimization algorithm for cognitive radio networks based on a cloud sharing-decision mechanism. Three Key Performance Indicators (KPIs) were optimized: spectrum usage, power consumption, and exposure. For a realistic suburban scenario in Ghent city, Belgium, we determine the optimal trade-off between the KPIs. Compared to a traditional Cognitive Radio network design, our optimization algorithm for the cloud-based architecture reduced the network power consumption by 27.5%, the average global exposure by 34.3%, and spectrum usage by 34.5% at the same time. Even for the worst-case optimization (worst achieved result of a single KPI), our solution performs better than the traditional architecture by 4.8% in terms of network power consumption, 7.3% in terms of spectrum usage, and 4.3% in terms of global exposure

    IoT-based management platform for real-time spectrum and energy optimization of broadcasting networks

    Get PDF
    We investigate the feasibility of Internet of Things (IoT) technology to monitor and improve the energy efficiency and spectrum usage efficiency of broadcasting networks in the Ultra-High Frequency (UHF) band. Traditional broadcasting networks are designed with a fixed radiated power to guarantee a certain service availability. However, excessive fading margins often lead to inefficient spectrum usage, higher interference, and power consumption. We present an IoT-based management platform capable of dynamically adjusting the broadcasting network radiated power according to the current propagation conditions. We assess the performance and benchmark two IoT solutions (i.e., LoRa and NB-IoT). By means of the IoT management platform the broadcasting network with adaptive radiated power reduces the power consumption by 15% to 16.3% and increases the spectrum usage efficiency by 32% to 35% (depending on the IoT platform). The IoT feedback loop power consumption represents less than 2% of the system power consumption. In addition, white space spectrum availability for secondary wireless telecommunications services is increased by 34% during 90% of the time

    Emulation of a dynamic broadcasting network with adaptive radiated power in a real scenario

    Get PDF
    Broadcasting networks are an efficient means for delivering media content to a high density of users, because their operational cost is almost independent of the size of their audience for a given coverage area. However, when the propagation conditions are better than the worst-case design, the energy efficiency is suboptimal. In this paper, we present the results of a trial to emulate the performance of a dynamic broadcasting network with adaptive radiated power in a real broadcasting scenario. We assess the radiated power of the broadcasting network in a Cuban environment by means of a monitoring device. The power consumption of the dynamic broadcasting network with adaptive radiated power is assessed and compared with traditional broadcasting for different implementation margins. To emulate the performance of the dynamic broadcasting network with adaptive radiated power, we consider a commercial Digital Terrestrial Multimedia Broadcast (DTMB) transmitter in Havana, Cuba. Testbed hardware is designed and developed to measure the fading with a commercial receiver and emulate the signal reception under adaptive power conditions. The dynamic broadcasting network performance is assessed following the general guidelines and techniques for the evaluation of digital terrestrial television broadcasting systems recommended in the ITU-R BT. 2035-2 report

    The Forest Observation System, building a global reference dataset for remote sensing of forest biomass

    Get PDF
    International audienceForest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (aGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. aGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. all plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore