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Abstract 

New generation networks, based on Cognitive Radio technology, allow dynamic allocation of 

the spectrum, alleviating spectrum scarcity. These networks also have a resilient potential for 

dynamic operation for energy saving. In this paper, we present a novel wireless network 

optimization algorithm for cognitive radio networks based on a cloud sharing-decision 

mechanism. Three Key Performance Indicators (KPIs) were optimized: spectrum usage, 

power consumption, and exposure. For a realistic suburban scenario in Ghent city, Belgium, 

we determine the optimal trade-off between the KPIs. Compared to a traditional Cognitive 

Radio network design, our optimization algorithm for the cloud-based architecture reduced 

the network power consumption by 27.5%, the average global exposure by 34.3%, and 

spectrum usage by 34.5% at the same time. Even for the worst-case optimization (worst 

achieved result of a single KPI), our solution performs better than the traditional architecture 

by 4.8% in terms of network power consumption, 7.3% in terms of spectrum usage, and 4.3% 

in terms of global exposure. 

1. Introduction 

The lack of spectrum availability for satisfying the exponential increase in wireless traffic 

demand has become a major concern in the wireless communication community. 

Paradoxically, several extensive spectrum usage measurement campaigns have demonstrated 

that most of the radio frequency spectrum is not in use or is sub-utilized. According to these 

spectrum surveys performed in cities worldwide, the average use of the sub-3-GHz spectrum 

regarding both space and time is rarely higher than 20% [1, 2, 3, 4]. 

In this context, Cognitive Radio has become a flexible solution to overcome spectrum 

unavailability by opportunistically exploiting underutilized or unutilized spectrum, 

particularly in the television broadcasting bands (TV white spaces, TVWS) [5, 6, 7]. Several 

standardization efforts have been made, e.g., IEEE 802.11af [8], IEEE 802.22 [9, 10]. Also, 

for the utilization of TVWS by LTE networks and beyond, the European 

Telecommunications Standard Institute (ETSI) technical report TR 103 067/2013 [11] 

analyzed the feasibility of LTE Cognitive Radio Systems operating in TVWS. 
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Because of “spectrum scarcity”, the bandwidth requirements for next-generation radio and 

5G networks are only fully satisfied at the highest spectrum bands. As a consequence, several 

applications for 5G networks are limited in rural scenarios, small suburban cities, and in 

general, in areas with low population density. The feasibility of 5G networks based on 

Cognitive Radio technology and carrier aggregation, enabling wideband access in rural areas, 

has also been investigated. Hence, Cognitive Radio is a key enabling technology for new 

generation radio [12].  

A major concern with Cognitive Radio is that interference management has been a challenge 

for scenarios with dense spectrum occupancy or high user density [13, 14, 7]. The currently 

implemented standards have some limitations for assessing the trade-off between interference 

and spectrum usage efficiency. For instance, IEEE 802.11f does not specify any spectrum 

sensing requirements to be met by user devices and base stations (BSs) for further spectrum 

allocation [8]. Although geolocation databases allow minimizing interference to the primary 

licensed services (generally digital television broadcasting), spectrum sensing and spectrum 

allocation management have to be implemented to avoid interference to or from other 

Cognitive Radio devices in the same network or other Cognitive Radio networks. These 

databases are based on measurement campaigns and spectrum usage surveys. Hence, the 

spectrum usage information is not updated dynamically, reducing the potential spectrum 

sharing efficiency of cognitive radio networks. IEEE 802.22b provides some guidelines and 

mandatory channel sensing requirements. For instance, it defines the minimum requirements 

for the scheduling of sensing windows and quiet periods, mandatory users’ device reports of 

detected interference, and maximum interference thresholds for different signal types [10]. 

However, mandatory sensing techniques are not defined [15]. 

Several advances on spectrum sensing techniques for avoiding interference have been 

reported in recent years.  In [16], the authors presented a cooperative scheme for spectrum 

sharing based on the information provided by secondary Wi-Fi nodes. Different 

improvements for increasing detection efficiency, reducing interference, and exploration time 

are presented in [17, 18, 19]. A learning algorithm to improve spectrum exploration and to 

reduce the interference caused by cognitive radio devices is presented in [20]. [21] proposes a 

learning algorithm to maximize the network throughput by allowing varying sensing time and 

considering the historical behavior of the user’s devices. However, the improvement of the 

sensing and detection accuracy by itself did not solve the trade-off between allowable 

interference and spectrum usage efficiency. For this reason, in many cases, regulators ruled 

the utilization of geolocation databases. These databases contribute to reducing interference 

but at the cost of a lower spectrum usage efficiency. No major advances have been reported 

on architecture and dynamic network optimization, being a limitation for a better trade-off 

between interference management and spectrum usage efficiency. 

Few advances have been made on architecture and network medium access and connectivity 

efficiency to optimize the network’s Key Performance Indicators (KPIs). In [22], the authors 

present a novel cooperative system for the efficient utilization of TVWS based on an Internet 

of Things (IoT) sensing network. The proposed multilayer architecture improves coexistence 

issues and the protection of the primary services by combining spectrum sensing and a QoS 

feedback procedure implemented throughout a control logic in an IoT social platform (where 

all devices share performance information) [22]. However, this approach requires additional 

IoT devices for the exchange of information through a third network (IoT platform). Despite 
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this, a centralized management approach could be an interesting solution for improving 

spectrum usage efficiency and coexistence between different services if the same Cognitive 

Radio platform is used rather than an additional platform. 

Besides spectrum usage efficiency, power consumption, and exposure of human beings to 

radio radiation are important network KPIs. These indicators are closely related to the 

environmental footprint of Information and Communication Technologies (ICT) [23, 24]. 

Hence, to achieve environment-friendly wireless networks, it is also required to optimize 

power consumption and exposure. However, these parameters require the assessment of a 

trade-off [25, 26, 27]. Also, in [28] authors developed a heuristic method for maximizing the 

energy efficiency in cognitive sensor networks by optimizing the sensing time and symbol 

sequence length. Nevertheless, as the spectrum frequency allocation plays a major role in 

energy efficiency, further research requires a multi-objective assessment of the optimization 

problem. In this regard, [29] presents a method for the identification of multi-objective 

optimal settings on a wireless experimentation facility. 

The novelty of this paper is the multi-objective optimization of new generation Cognitive 

Radio networks. Instead of a traditional distributed architecture for spectrum management, 

we consider a cloud-based architecture. In the traditional cognitive radio architecture, the 

allocation of spectrum and decisions on the user connections are made by each BS 

independently. The BSs only have information regarding the spectrum usage and interference 

from the devices within their reach. Hence, each decision is uncoordinated and independently 

taken based on limited information on the spectrum and propagation conditions. In the 

proposed cloud-based architecture the information retrieved by the BSs from each network 

device is assessed in a centralized Access Controller by a multi-objective optimization 

algorithm. Based on the global knowledge of the propagation conditions, spectrum usage, and 

interference perceived by all devices, it is possible to dynamically optimize the network, 

achieving a higher network efficiency in terms of power consumption, spectrum usage, and 

global exposure. The dynamic optimization of the network is required for improving its KPIs 

and reducing harmful interference from/to the primary licensed service. There is no previous 

research, according to the authors’ knowledge, on networking optimization to account for the 

trade-off among power consumption, spectrum usage efficiency, and exposure for Cognitive 

Radio in a cloud-based architecture.  

The outline of this paper is as follows. In Section 2, we describe the proposed cloud-based 

architecture for managing Cognitive Radio networks, briefly introduce Pareto optimization, 

define metrics, details of rationale, describe the multi-objective optimization algorithm, and a 

description of a realistic scenario and initial wireless network setup considerations. In 

Section 3, we present the network optimization results based on the proposed architecture and 

algorithm and benchmark the result against a traditional Cognitive Radio network. 

Conclusions are presented in Section 4.  

2. Method 

2.1 Cloud-based architecture for Cognitive Radio network management 

Fig. 1 shows the proposed cloud-based architecture for the Cognitive Radio network that will 

allow achieving a higher multi-objective optimization level (Fig.1b) compared to the 

traditional architecture [8, 9, 10] (Fig.1a). 
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Fig. 1. Cognitive Radio network architecture a) Traditional [9] b) Cloud-based management. 

 

The traditional Cognitive Radio network architecture (in Fig.1a) comprises at the user side 

the Consumer Premise Equipment (CPE), including an ethernet transceiver and the Cognitive 

Radio unit. The architecture also includes the BSs, including the BS management or system 

processing unit for handling the users’ data registration, tracking, and application of spectrum 

management policies defined in the standard. Finally, a connection to ethernet or optical fiber 

provides access to the internet and (if applicable) to a geolocation database. In this topology 

(Fig. 1a), each BS oversees users’ connections, registration, and tracking and the application 

of spectrum management policies. BSs take independent decisions about spectrum allocation 

based on self-sensing and data provided by users in their range. The provision of a 

geolocation database restricts the degrees of freedom of the BS, forbidding access to certain 

channels, footprint limitations, and other regulatory policies. These databases are based on 

static data from spectrum surveys (no real-time updates). The variations on the propagation 

conditions produce a variation on perceived network interference and spectrum usage 

efficiency. 

Our architecture modification proposal for new generation Cognitive Radio networks consists 

of moving most management functions (mainly those related to spectrum management) to a 

central Access Controller (Fig.1b). In this way, it is possible to collect the information sensed 

by all network devices. By knowing and processing the network performance parameters 

from the whole network, it is possible to make better decisions (optimization) for serving the 

users’ traffic with higher efficiency regarding the network power consumption, global 

exposure, and spectrum usage [30]. This information is sent by all BSs to the central Access 

Controller by the BS data backbone to the cloud. We assume the signalization data related to 

the Cognitive Radio functionalities is negligible compared to the backbone data capacity. The 

collected information is the same provided by the geolocation databases to the BSs. Hence, 

an adaptation of the headers and interfaces defined by the standards is not required. 

Although a distributed network topology is generally efficient, if the devices taking decisions 

are affected by devices outside their control the system becomes unstable.  This is similar to 

the concept of automated vehicular driving in 5G networks.  When the network topology is 

based on Vehicular-to-Vehicular (V2V) communication, each vehicle only has information 

about the vehicles in its range, and the system quickly becomes unstable (cars start a crashing 

chain). This is because each car’s control decision is based on the individual knowledge of 



 5 

the environment [30]. The same happens in the traditional Cognitive Radio network, where a 

crash corresponds to interference, and the same happens in any open-loop control system. 

2.2 Pareto Efficiency 

Pareto optimal is a concept of efficiency initially applied in social science and economic 

problems. The Pareto optimal state is defined as a state where it is not possible to make a 

single objective (parameter) better without making at least another one worse [31]. In 

engineering, usually more than one parameter needs to be maximized (multi-objective 

optimization problems). For a set of choices and a metric to value them, it is possible to find 

a set that is Pareto efficient. This set is named the Pareto Front [29]. Hence, it is possible to 

find a set of optimal trade-offs among all parameters depending on the design constraints, 

scenario, and application. 

Wireless networks have several opposing performance indicators, e.g., throughput, energy, 

latency, electromagnetic radiation, and spectrum usage [29]. The maximization of a certain 

parameter leads to the minimization of at least one other. This is generally a condition that is 

not optimal in many wireless applications. By using Pareto optimization, it is possible to 

evaluate several combinations of performance indicators, each one with a certain weight 

(Pareto coefficient) in the optimization algorithm (see Section 2.5). In this way, the general 

Pareto equation P can be defined as a set of n independent metrics g multiplied by a certain 

weight w. 
 

 1 2 1 1 2 2( ; ;...; ) ; ; ;n n nP w w w w g w g w g=        (1) 

 

where for any combination of 1 2; ;...; nw w w  the following condition must be satisfied: 

 

1
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i

i

w
=

=       (2) 

 

We investigate the trade-off among three Key Performance Indicators (KPIs) in a cognitive 

radio network based on the IEEE 802.22 standard by means of Pareto optimization, being the 

network power consumption, human exposure, and spectrum usage.  

2.3 Rationale 

In a cognitive network, each device has to sense the spectrum and provide to nearby BSs 

information related to perceived interference. This information is sent over a wireless link 

using BPSK modulation in a channel sensed as empty channel to the nearby BSs. The first 

BS processing the user connection request and allocating the spectrum resources will register 

the user. In our proposal, this information is assumed to be collected by the BSs, but the 

allocation of spectrum resources and interference management will be handled by a central 

access controller. Fig. 2 describes the process of connecting a single user to a Cognitive 

Radio BS. 
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Fig. 2. Flow chart of the steps for connecting a user to a BS in the cloud-based Cognitive Radio architecture. 

First, the user devices ui will sense the spectrum and will provide the perceived interference 

from other BSs, other users, and broadcasting stations to a central access controller (i.e., I1, 

I2, I3,…, In in Fig. 2). In addition, the user provides information about the radiated signal, 

geolocation information, and other parameters required by the standard [9] or by regulatory 

authorities. Notice that the initial link is settled with a nearby BS by using any frequency 

perceived by ui as free and BPSK modulation for minimum interference [9]. Further, the 

algorithm must assess the information received from all users and BSs, to compare the 

perceived interference with the maximum interference signal level allowed (ISL [dBm]) and 

settle the best connection for ui taking into account the network KPIs. The ISL is the 

maximum signal level for which the algorithm will allow reusing the same frequencies (i.e., 

f1, f2, f3,…, fn, in Fig. 2) by different BSs. One ISL constraint is defined for sharing 

frequencies used by television broadcasting (e.g., TV in Fig. 2) and another value for sharing 

frequencies in use by Cognitive Radio BSs (e.g., BS1 and BS2 in Fig. 2). Notice that the 

spectrum allocation is settled for each user. A certain BS can use different frequencies for 

communicating with different users at the same time, depending on the ISL constraint. For 

instance, if the interference is higher than the maximum allowable BS2 and ui (see Fig. 2) 

must communicate in a frequency not in use by BS1 or TV (i.e., f3). Otherwise, it can reuse the 

same frequency (i.e., f1 or f2). 

For the greenfield network planning, a reduction in the number of BSs has a major impact on 

the minimization of the network power consumption and cost. This is because the Cognitive 

Radio BSs have an idle or fixed power consumption that is not directly related to the radiated 

power or with the traffic load. For instance, for peak traffic and maximum radiated signal 

level, the Cognitive Radio BS power consumption is 64W versus 38W without data traffic 

(idle power consumption is approximately 59%) [32]. Additionally, the architecture with a 

centralized access control allows dynamically switching a group of BSs from active to sleep 

mode. The Cognitive Radio BS has a power consumption of only 9 W in sleep mode. 

However, by reducing the number of BSs, the radiated power per BS increases to cover the 

most distant users. As a consequence, the exposure in that cell increases [25]. In this way, the 

optimization algorithm should follow different optimization strategies, depending on the 

parameters to be optimized. More details of the optimization algorithm are provided in 

Section 2.5). 
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2.4 Metrics 

First, we defined the following metrics for accounting in the algorithm for the KPIs intended 

to be optimized, i.e., network power consumption, network global exposure, and spectrum 

usage. 

2.4.1 Power Consumption 

The power consumption for a network configuration is accounted for following the power 

consumption model presented in [32] for a Cognitive Radio BS. Here, when accounting for 

the network power consumption, we consider that the centralized access controller (see 

Fig. 1) can switch the BSs that are not in use at a certain instant of time to sleep mode. In 

sleep mode, the Cognitive Radio BS has a power consumption as low as 9 W, including the 

radio unit, optical backhaul, and electrical transceiver. Notice that without centralized 

control, not all power-consuming components can be switched to sleep mode. 

2.4.2 Network Global Exposure 

We consider the Electric field (E-field) in each pixel of the map as the metric for 

characterizing the exposure caused by all radiating sources in the network (i.e., network 

global exposure). The E-field is commonly used for exposure characterization, as it is 

independent of the exposed person. As such, the E-field unambiguously allows assessing the 

exposure due to a given wireless network [33]. Hence, the global exposure EG is defined as a 

weighted average of the mean electric field E50 and the 95-percentile of the field strength  

E95 over the covered area [25], in order to optimize median and maximal exposure values. As 

in [23], we consider an equally weighted E50 and E95.  Hence, the EG can be described by the 

following equation: 
 

2
9550 EE

EG

+
=      (3) 

 

For calculating the electric field strength over the covered area, a grid of “test points” 

separated 50 m from each other is generated covering the entire map. At each grid point, the 

contribution of each transmitter Txj to the electric field strength is calculated. The electric 

field ETx [V/m] due to transmitter Txj can be calculated based on Txj’s Equivalent 

Isotropically Radiated Power EIRP [dBm], frequency f [MHz], and the path loss PL [dB] 

from the Txj to the grid point (x,y) [25], as described by Equation 4. 
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The contribution of all transmitters to the electric field strength at each grid point (x,y) is 

calculated by accounting for the root sum of the squares of the electric field strengths due to 

each Txj [25]. 
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where n is the total number of transmitters. The field vectors caused by each source are thus 

assumed to have no phase correlation [25]. 

2.4.3 Spectrum usage 

We define the spectrum usage SU as the number of channels that are required by the network 

for settling all simultaneous connections in the deployment scenario. 
 

1

( , ) ( , )
Smax

U i j ch i j

ch

S u BS k u BS
=

=      (6) 

 

where kch is 1 if the channel ch has been assigned to a communication link between at least 

one user ui and a BSj, else kch = 0. Smax is the maximum number of channels allowed to be 

used according to the regulatory domain. The spectrum optimization is performed by reusing 

channels in the communication between each user and the BS. The metric SU is a measure of 

the spectrum occupation at the BS and user locations. Each user device dynamically accesses 

the spectrum at the most suitable frequency. A single BS can communicate with its connected 

users by means of different frequencies. The frequency channels are reused when the 

interference constraints (ISL) defined in the standard [9] are accomplished.  

For comparing the spectrum usage efficiency (SUE ∈ [0:1]) between the proposed cloud-

based architecture and the traditional distributed architecture for cognitive radio, we quantify 

the spectrum usage efficiency as the ratio between the number of channels that are really in 

use by the radiocommunication systems [SU] and the maximum allocated spectrum by the 

regulators (in terms of channels) in the  UHF bands [Smax]. The following equation allows 

quantifying the spectrum usage efficiency. 

1 U

max

S
SUE

S
= −       (7) 

2.4.4 White Space Availability 

For a fair comparison among different solutions, we also define the white space availability 

in the whole area. 

 

( )( , ) ,max U TxWa x y S S x y= −      (8) 

 

The white space availability Wa represents the number of channels available at each grid 

point (x,y) after the access controller assigned the spectrum for all links among the BSs and 

the users and also accounting for television stations. For calculating this value the whole area 

is divided into grid points with coordinates x,y (considering a resolution of 50m). Wa is the 

difference between the total number of channels Smax and the number of channels in use by 

the Cognitive Radio network devices and the channels in use by the television broadcasting 

service SUTx at each grid point. Notice that SU accounts only for the Cognitive Radio network 

spectrum usage, and SUTx also includes the television broadcasting spectrum usage. Hence, 

Wa represents the remaining channel availability in the area. The mean white space 

availability can be calculated accounting for Wa in all grid points. 
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2.5 Multi-objective Optimization Algorithm 

Algorithm 1 describes the network optimization algorithm that will be used for minimizing 

the network power consumption, spectrum usage, and exposure (i.e., goal KPIs). The 

algorithm is heuristic and capacity-based [23]. Hence, we cannot guarantee an absolute 

optimal network solution but a solution that is good enough for solving the optimization 

problem. The solution convergence is defined by a maximum 2% standard deviation of the 

progressive average for each optimized network KPIs (spectrum, power consumption, and 

exposure). The lower the number of users per square kilometre, the more diverse the possible 

distributions of those users, and the higher the number of possible solutions. Notice that 

interference and spectrum management is not included in the base algorithm described  

in [23, 24]. Hence, modifications were performed for the multi-objective optimization goals 

for this work. 

The base algorithm in [23, 24] was divided into two phases. One phase comprises the 

greenfield network planning (i.e., designing the network from zero infrastructure based on the 

capacity and coverage requirements), and a second phase includes the dynamic optimization 

of the considered KPIs. The main contributions to the algorithm design are the inclusion of 

dynamic spectrum allocation for the BSs based on interference constraints and an extension 

for operating in a cloud-based architecture assessing the data from all network devices. Here, 

the spectrum usage efficiency is also optimized as spectrum usage efficiency is a KPI in the 

algorithm fitness function. Also, the automation of the selection of BSs locations based on a 

histogram allows a faster and more efficient design of the initial network planning. 

2.5.1 Phase 1: Greenfield network planning 

For the greenfield planning and BS locations selection, the network traffic and coverage are 

modeled by Phase 1 of the optimization algorithm. First, the users and traffic requirements 

are input parameters. The algorithm first generates a uniform and pseudo-random distribution 

of the users in the area and assign a traffic load per user (see Phase 1 line 2 in Algorithm 1, 

the initial values for the input parameters are described in Section 2.6). Notice that the whole 

algorithm is repeated for a maximum number of simulations (Max_Sim). For the greenfield 

planning, an initial set of BSs (see initial values of input parameters in Section 2.6) is 

optimized to find the minimum required number of BSs (NBS) [32] and the best BS locations 

(in terms of average path loss to users). A histogram with the number of connections settled 

by each BS during a group of simulations (Max_Sim) is performed, and the optimal BS 

locations are chosen based on the probability of having the lowest path loss to users (Phase 1 

line 5 to 13, in Algorithm 1). The number of simulations Max_Sim is empirically chosen to 

guarantee that the progressive average of the KPIs has a standard deviation lower than 2%. 

The output of the first phase is a new set with a number NBS of optimal BS locations (see 

Phase 1, line 15 in Algorithm 1). 
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Algorithm 1. Multi-objective optimization algorithm. 
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2.5.2 Phase 2: Dynamic network optimization 

In a second phase the algorithm dynamically optimizes the network KPIs (i.e., spectrum 

usage, power consumption, and exposure). The second phase receives as input the set of BSs 

(Best_BS_locations). The users and traffic densities are the same as Phase 1. For each 

combination of Pareto coefficients (coefficients defining how each KPI is weighted when 

optimizing the network), a number of Max_Sim simulations with different random 

distributions of users is performed. For each Pareto coefficient set and simulation (user 

distributions), a network solution is retrieved with the achieved value for the evaluated KPIs. 

Each combination of KPIs represents a sample in the whole Pareto population. For the Pareto 

optimization, several combinations of weights must be evaluated, considering a trade-off 

between accuracy and computation time. We consider a resolution of 0.25 for the Pareto 

coefficients.  

For the total number of simulations Max_Sim and for each user (ui), the algorithm calculates 

a fitness value for each possible connection BSj. For each possible connection, the algorithm 

calculates the Power Consumption, Exposure, and after evaluating a certain Interference 

Signal Level constraint (ISL), it finds the best spectrum allocation for each link to be settled 

(Phase 2 lines 5 to 8 in Algorithm 1).  

For the network modeling and optimization, the interference levels are calculated based on 

the radiated power and path loss calculations. We start by evaluating (and further assigning) 

the lowest available frequency (for a better signal propagation). First, the algorithm will 

verify the interference level at the user and BS sites generated by all users, all BSs, and 

television broadcasting towers in the surroundings.  This is possible because we consider a 

centralized access architecture retrieving information from all devices. Hence, the decision on 

frequency assignment is based on the information provided by all BSs from all users. Notice 

that in the traditional Cognitive Radio network architecture, the BSs are in charge of the 

frequency allocations taking into consideration static information from a geolocation 

database and the interference level information provided only by users in their range. 

Fitness Function: The fitness function fit (Phase 2 line 9 in Algorithm 1) accounts for the 

network power consumption PC [W], global exposure EG [V/m] [23], and spectrum usage SU 

if the user ui is connected to a certain BSj (see metrics defined in Section 2.4). 
 

1 2 3( ; ) 1 1 1C G U
i j

max max max

P E S
fit u BS w w w

P E S

     
=  − +  − +  −     

     

    (9) 

 

where Pmax is the maximum power consumed by the network (i.e., all BSs active with a 

maximum radiated power); Emax is the maximal exposure over the considered area for the 

same network conditions. In this way, all performance indicators are normalized, and no 

parameter is overrated. Hence, for the worst-case PC = Pmax, EG = Emax, and SU = Smax, the 

fitness function equals 0. The weight factors are defined as w1, w2, and w3. These weight 

factors corresponding to the Pareto coefficients and range from 0 to 1. 

Each user is connected to the BS with the highest fitness value (lowest power consumption, 

spectrum usage, and exposure), if this BS is already active and still can support the user’s 

demanded bitrate (Phase 2 lines 9 to 13 in Algorithm 1). If no active BS can support the 
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user’s demanded bitrate, a new BS with the best fitness value is switched active. For 

balancing the network load, already connected users can be switched to this new active BS if 

their fitness value to this BS is higher than before (Phase 2 lines 14 to 18 in Algorithm 1). 

Once all users have been evaluated, the first network solution is optimized by decreasing the 

BS radiated power (Phase 2, lines 21 to 25 in Algorithm 1). The stop condition is reached 

when the path loss experienced by a user is higher than the maximum allowable path  

loss [23]. The decrease of the radiated power will decrease the power consumption, exposure 

and will allow a better re-usage of the spectrum. 

The algorithm will calculate the network solutions white space availability (Wa) for 

generating a map with the spectrum availability (Phase 2, line 26 in Algorithm 1). Finally, the 

algorithm will generate the network solutions (Phase 2, line 27 in Algorithm 1). For each 

network solution, the KPIs are calculated for the whole network. After all the network 

solutions are retrieved, the whole Pareto population is mapped. Each pixel in the map 

represents the KPIs for a certain Pareto weight combination and a unique random distribution 

of the users in the area (Pareto population). In this way, it is possible to assess the network 

performance for each KPI and find the best trade-off between these KPIs (Pareto front). The 

Pareto frontier will be defined by a surface where every single parameter leads to the KPIs 

minima.  

 

Because the Pareto optimization in the designed heuristic algorithm takes a finite number of 

weights, the missing pixels in the three-dimensional optimization map are interpolated using 

Delaunay triangulation. 

2.6 Evaluation scenario and initial setup 

To validate the proposed architecture and optimization algorithm, we modeled and optimized 

a Cognitive Radio network in a real suburban wireless scenario. We consider the city of 

Ghent, Belgium (68 km2) for the greenfield planning and later dynamic optimization of the 

network. Fig. 3b shows a map of Ghent City and the BS possible locations denoted with dots. 

Fig. 3a shows a map of the Region of Flanders, Belgium covering an area of approximately 

13,522 km2 with the location of the television broadcast transmitters. 
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Fig. 3. a) Broadcast transmitters in the region of Flanders, Belgium, and b) area to be covered in Ghent, City, 45 

possible BS locations identified with dots. 

A traditional Cognitive Radio network design is also modeled for a comparison reference. 

For this network, it is not possible to implement the sleep mode. This is because in sleep 

mode the spectrum management and user tracking in the BS are switched off. Without a 

centralized access controller capable of assuming spectrum management and tracking 

functions the Cognitive Radio BS can only be switched to idle.  In idle mode, the BSs 

implement most sensing functions, signaling, and tracking, but no user data payload traffic is 

handled.  

A set of 45 possible locations is considered for the Cognitive Radio BSs (represented by 

squares in Fig. 3b). After the first optimization step, the algorithm retrieves a histogram of 

the optimal BSs locations and determines the minimum number required to satisfy the 

intended coverage (NBS, see Section 2.5.1). The network is designed to guarantee 95% 

coverage at the cell-edge during 99% of the time. We consider the link budget presented in 

[32] for the IEEE 802.22 standard. 

We consider 224 simultaneous user connections at the peak traffic time and a bit rate of 

1 Mbps per user [32]. Three scenarios are modeled, and the networks are dynamically 

optimized for three densities of BS infrastructure availability, i.e., the minimum number of 

BSs that satisfies the coverage constraint (NBS), 25%, and 50% higher BS density. In all 

cases, for the green field network planning the BSs are chosen according to the user’s 

connections histogram. 
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The algorithm will realize two network solutions for each BS infrastructure availability 

considering an interference threshold of -116 dBm and -93 dBm for the Cognitive Radio 

sensed signals. The threshold of -116 dBm is considered if channel occupancy is based on 

sensing the IEEE 802.22.1 Beacon and sensing mode 0. The threshold of -93 dBm is defined 

in the standard for sensing mode zero and signal type IEEE 802.22 WRAN [9]. There is no 

recommended interference threshold value for DVB-T/T2 digital television signals in the 

IEEE 802.22 standard [9, 10]. For evaluating the reusability of frequencies in use by nearby 

television broadcasting stations, an interference constraint of -95 dBm is considered. This 

value is based on the recommended protection contour of the broadcast transmitter [3]. The 

chosen interference constraint guarantees the minimum carrier-to-interference-ratio 

recommended in [14] for the protection of the primary service from harmful interference. 

All the broadcast transmitters around Ghent (Fig. 3a) are included in the model to account for 

the interference levels. For the path loss calculations for TV Towers in Flanders, we consider 

their actual transmitter configurations [34, 35] and the ITU path loss model ITU-R P.1546-

5/2013 [36]. For the path loss calculations in Ghent, we consider an experimental one-slope 

path loss model based on an extensive measurement campaign in the UHF band as described  

in [37]. This model has higher precision for Ghent city than the ITU-R P.1546-5/2013 model. 

3. Results and Discussion 

3.1 Greenfield network planning: infrastructure density 

Figure 4 shows a histogram of all users’ connections to the BSs after 40 simulations 

considering different random distributions of the users in the area.  

 

 
Fig. 4 Network connections histogram 

 

The minimum number of BSs for satisfying the traffic and coverage (spatial and temporal)  

requirements of the Cognitive Radio network is NBS = 22. The BS selection is not defined by 

the starting selection of the algorithm but the relative locations of the BSs and the 

environmental propagation conditions. The second optimization step, i.e., dynamic network 

optimization, is realized for the chosen 22 BSs based on the computed histogram (in Fig. 4). 

The dynamic network optimization from Phase 2 (in Section 2.5.2) is also realized for a 25% 

(28 BSs) and 50% (33 BSs) higher BS infrastructure (BS selection based on the histogram). 
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3.2 Pareto Optimization 

Fig. 5 shows the generated KPI optimization results for the minimum number of BSs to 

guarantee the coverage requirements (NBS = 22) and considering an Interference Signal Level 

threshold ISL = -93 dBm. 

 
Fig. 5 Dynamic network optimization results for 22 BS locations (minimum to guarantee coverage and traffic 

requirements),  @ ISL = -93 dBm (2D projection view). The dashed line represents (part) of the Pareto front. 

Marker 1 denotes the best power consumption results, marker 2 best spectrum usage result, marker 3 best 

exposure result, and marker 4 optimal trade-off between the KPIs 

 

 

The best performance in terms of spectrum and global exposure is denoted by markers 2 and 

3, respectively. The KPI results for these Pareto points correspond to the weights (Pareto 

coefficients), maximizing either the optimization of spectrum usage or network global 

exposure. The difference between all the KPIs for these two markers is at most 5.3%. This is 

because a major impact in both spectrum usage and exposure is achieved for a larger density 

of active BSs with a low radiated power. However, the power consumption for these network 

solutions is approximately 15% higher than the best solution in terms of power consumption 

(marker 1 in Fig. 5). This difference is caused by the strategies followed by the algorithm for 

optimizing different KPIs. When the Pareto coefficients for exposure or spectrum 

optimization are higher, the network solution will lead to an increase in the number of active 

BSs (serving user traffic) with a lower radiated power and a better load balance. For 

improving spectrum reusability, a lower radiated signal level will lead to lower spectrum 

usage but with a more balanced rate than in the case of the network exposure optimization. 

This is because the ISL constraint has an additional impact on the connection decisions and 

spectrum allocation. Conversely, when the weight for the power consumption is higher in the 

fitness function, the algorithm will try to switch to sleep mode BSs that are not required at a 

certain instant of time for handling the user traffic demand or coverage. This network 

configuration will lead to lower power consumption at the cost of a lower load balance.  

 

In general, with the increase in the number of active BSs, spectrum and network exposure 

improve for different points in the Pareto front (surface inside the dashed line), but with the 

drawback of higher power consumption. This is because the sleep mode of the BS consumes 
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only 9W (14% of the maximum power consumption). Hence, a higher optimization in terms 

of power consumption is achieved when BSs are switched to sleep mode. The best trade-off 

between all the KPIs (best balance between the optimization strategies) is denoted by marker 

4. The drawback of this balanced network solution is an increase between 5% and 15% for 

each KPI, compared to the maximum optimization achievable for a single KPI (markers 1 to 

3). 

3.3 Impact of the infrastructure density on the network dynamic optimization 

Fig. 6 shows the dynamic optimization results when a) 28 BSs are available (an increase of 

BS locations by 25%)  b) 33 BSs (an increase of BS locations by 50%) with an Interference 

Signal Level constraint ISL = -93 dBm. 

 
 

Fig. 6 Optimization results for a) 28 BS and b) 33 BS locations @ ISL = -93 dBm (2D projection view). The 

dashed line represents (part) of the Pareto front. Marker 1 denotes the best power consumption results, marker 2 

best spectrum usage result, marker 3 best exposure result, and marker 4 optimal trade-off between the KPIs. 

 

By increasing the infrastructure availability (more BSs to be switched from sleep mode to 
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active if needed) by 25%, the spectrum usage is slightly reduced by 3.7% (see marker 2 in 

Fig. 5 vs Fig. 6a), and the global exposure reduces by 16.3% (see marker 3 in Fig. 5 vs Fig. 

6a). An increase of 50% of BS density (Fig. 6b) reduces the spectrum usage by 5.6% (see 

marker 2) and exposure by 15.8% (see marker 3) compared with 22 BS density (Fig. 5). 

Notice that here the exposure is similar for 28 BSs and 33 BSs. In this case, the reduction of 

radiated power per BS does not compensate for the increase of radiating sources (more BSs 

activated by the algorithm for serving users’ traffic). The improvements in spectrum usage 

and exposure have a drawback on the network power consumption. The power consumption 

increases by 13.3% to 15% for a 25% higher BS density (Fig. 6a marker 2 and 3) and 17.7% 

to 20.6% for a 50% higher BS density (Fig. 6b). This is a direct consequence of a higher 

density of active BSs for the network solutions in Fig. 6a and Fig. 6b.  

 

For the best network solution in terms of power consumption (when the algorithm assigns a 

higher weight to the power consumption in the fitness function), there is no significant 

variation on this KPI as the density of available BS locations increases. The network power 

consumption varies from 0.91 kW to 0.92 kW (the difference is lower than the standard 

deviation). This is because the algorithm switches most of the BSs to sleep mode and 

increases the radiated power to reach the farthest users. The lower density of active BS 

(serving user traffic) leads to lower power consumption, even when the radiated power 

increases. As the density of active BSs decreases, the power consumption is reduced between 

30% and 35% compared with the maximum network power consumption, but the spectrum 

increases around 20% and the exposure between 20% and 37% (see marker 1 in Fig. 6 

compared to Fig. 5).   

The most balanced trade-off between the KPIs is denoted by marker 4 (the weight 

combination in the algorithm fitness function causes a better balance of the KPIs). Increasing 

the number of BS locations do not allow a significant improvement of the mean point in the 

Pareto frontier (marker 4). Notice that for a 25% higher BS density (see Fig. 6a marker 4), 

the mean spectrum usage only improves by 3.3% and the global exposure by 8.6% while the 

network power consumption remains almost equal (the difference is lower than the standard 

deviation). For a 50% higher BS density (see Fig. 6b marker 4), the mean spectrum usage 

improves by 10%, but the global exposure only improves by 3.7% with almost the same 

network power consumption.  

3.4 Cloud-based vs traditional network architecture 

Fig. 7 shows the difference (in percentages) for each Pareto point in the cloud-based 

architecture compared to the traditional distributed architecture for 22 BSs. 
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Fig. 7 Differential optimization comparison between the traditional Cognitive Radio network and the results for 

the cloud-based Cognitive Radio architecture for 22 BS @ ISL = -93 dBm (2D projection view). Marker 1 

denotes the best power consumption result, marker 2 the best spectrum usage result, marker 3 the best exposure 

result, marker 4 the worst-case power consumption result, marker 5 the worst-case spectrum usage result, and 

marker 6 the worst-case exposure result. 

The network modeling for the traditional Cognitive Radio network and 22 BSs, yielded a 

power consumption of 1.3 kW, a network global exposure of 2.9 mV/m and mean spectrum 

usage of 18.4 channels, equivalent to a spectrum usage efficiency of 0.53. In Fig. 7 we 

represent the differential values (in percentage) compared to each Pareto point in the 

optimized cloud-based Cognitive Radio network. For maximum network power consumption 

savings (power consumption weighted higher in the algorithm fitness function), the cloud-

based architecture reduces power consumption by 30.6% (see marker 1 in Fig. 7). For this 

network solution the spectrum usage is 28.1% lower, and the mean global exposure is 30.1% 

lower, compared to the traditional Cognitive Radio network architecture. The best trade-off 

among spectrum usage and mean global exposure (see marker 2 Fig. 7) achieves a higher 

performance by 41.6% (for both KPIs) and lower power consumption by 19.9%. The most 

balanced network solution among all KPIs (marker 3 in Fig. 7) achieves a lower spectrum 

usage by 34.5%, lower global exposure by 34.3%, and lower network power consumption by 

27.5%. In addition, notice that for the worst-case network solution (weight combinations that 

lead to significant degradation of at least one KPI), the proposed architecture performs better 

than the traditional Cognitive Radio network at least by 4.8% in terms of network power 

consumption (marker 4 in Fig. 7), 7.3% in terms of spectrum usage (marker 5 in Fig. 7), and 

4.3 % in terms of global exposure (marker 6 in Fig. 7). These results are due to the fact that a 

better connection decision is made by a centralized access controller when assessing the data 

collected by all devices, rather than an independent decision by each BS based only on 

information from devices in their service area. 

3.5 Effect of ISL constraint 

Fig. 8 shows the Pareto multi-objective optimization results for 22 BS (minimum to 

guarantee coverage requirements) with an interference signal level constraint of -116 dBm. 
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Fig. 8 Pareto optimization results for 22 BSs @ ISL = -116 dBm 

The optimization results achieved for the network power consumption and global network 

exposure are similar in comparison to the results for an interference constraint of -93 dBm 

(see results for ISL = -93 dBm in Fig. 5). However, the spectrum usage is considerably 

higher. For the best network solution in terms of spectrum usage the SU is equal to 19.0 

(equivalent to spectrum usage efficiency of 0.51). This value is 43.7% worse than the best 

spectrum usage results for 22 BSs and ISL = -93 dBm, and 10% worse compared to the worst 

case in terms of spectrum for 22 BS and ISL = -93 dBm. This is because an increase in the 

number of active BSs and a decrease in the radiated signal level per BS is not enough to 

allow a high reuse of the spectrum due to the 23 dB stricter ISL constraint. 

3.6 White Space Availability  

Fig. 9 shows the white space distribution map (white space availability at each grid point in 

the area, see metric on Section 2.4.4) for the traditional Cognitive Radio network with non-

coordinated spectrum management and 22 BS (Fig. 9a), the cloud-based centralized spectrum 

management with 22 BS (Fig. 9b) and the same network architecture with 33 BS (Fig. 9c).  

 

The white space distribution maps in Fig. 9b and Fig. 9c correspond with the best results in 

terms of spectrum usage (denoted with marker 2 in Fig. 5 and 6b, respectively). The mean 

white space availability (accounting for the mean in the whole area) is 26.3% higher for the 

optimized proposed architecture than in the traditional Cognitive Radio network (Fig. 9b and 

9a, respectively). Notice that in the city center the difference of white space availability can 

be higher. This is because the interference level is higher in the city center due to the BS 

locations distribution and the confluence of the radiation from more BSs. 
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Fig. 9 White space availability distribution for a) the traditional Cognitive Radio architecture with 22 BSs,  

b) the proposed cloud architecture with 22 BSs and c) 33 BSs. 
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Although the mean white space availability does not increase significantly with the number 

of BS infrastructure availability (approximately 2% for a 50% increase in BS availability), 

the gradient (speed) of white space availability is higher for 33 BS than for 22 BS (Fig. 9b 

and 9c, respectively). This means more channels will be available in a region closer to Ghent 

if 33 BS locations are used for the green field network planning instead of 22 BS. This is 

because, although there are more radiating sources (active BSs), the radiation level per BS is 

lower. Hence the radiation is concentrated in a smaller area due to the environment path loss. 

4. Conclusions 

By means of a novel multi-objective optimization algorithm for Cognitive Radio networks, 

we quantified the advantages of cloud-based network management for Cognitive Radio 

technologies in comparison with a traditional distributed architecture. A Pareto efficiency 

modeling is performed for quantifying the trade-off among three KPIs: Power Consumption, 

Spectrum usage, and Exposure. 

Compared to a traditional Cognitive Radio network, our proposed architecture and 

optimization algorithm reduces the network power consumption by 27.5%, the average global 

exposure by 34.3%, and spectrum usage by 34.5% for the best balance among the three KPIs. 

Even for the worst optimization case (i.e., worst achieved result of a single KPI for a certain 

Pareto coefficient), our solution performs better than the traditional architecture by 4.8% in 

terms of network power consumption, 7.3% in terms of spectrum usage, and 4.3% in terms of 

global exposure. For instance, when the power consumption has a weight of 0 in the fitness 

function, still the algorithm in the cloud-based architecture performs better than the 

traditional distributed architecture. This is because a better allocation of spectrum in the 

proposed architecture indirectly contributes to reducing the radiated power and power 

consumption. 

For the cloud-based architecture, a higher BS infrastructure density (beyond the minimum 

that guarantees the intended spatial and temporal coverage) improves spectrum usage up to 

5.6% and global exposure up to 16.3% but with a drawback in terms of network power 

consumption from 13.3% to 20.6%.  

Future research will consist of the experimental characterization of the data rate as a function 

of the interference for a dynamic interference constraint assessment for Cognitive Radio 

networks. 
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