47 research outputs found

    The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum )

    Full text link
    This paper describes the genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum ), which is the model acetogenic bacterium that has been widely used for elucidating the Wood–Ljungdahl pathway of CO and CO 2 fixation. This pathway, which is also known as the reductive acetyl-CoA pathway, allows acetogenic (often called homoacetogenic) bacteria to convert glucose stoichiometrically into 3 mol of acetate and to grow autotrophically using H 2 and CO as electron donors and CO 2 as an electron acceptor. Methanogenic archaea use this pathway in reverse to grow by converting acetate into methane and CO 2 . Acetogenic bacteria also couple the Wood–Ljungdahl pathway to a variety of other pathways to allow the metabolism of a wide variety of carbon sources and electron donors (sugars, carboxylic acids, alcohols and aromatic compounds) and electron acceptors (CO 2 , nitrate, nitrite, thiosulfate, dimethylsulfoxide and aromatic carboxyl groups). The genome consists of a single circular 2 628 784 bp chromosome encoding 2615 open reading frames (ORFs), which includes 2523 predicted protein-encoding genes. Of these, 1834 genes (70.13%) have been assigned tentative functions, 665 (25.43%) matched genes of unknown function, and the remaining 24 (0.92%) had no database match. A total of 2384 (91.17%) of the ORFs in the M. thermoacetica genome can be grouped in orthologue clusters. This first genome sequence of an acetogenic bacterium provides important information related to how acetogens engage their extreme metabolic diversity by switching among different carbon substrates and electron donors/acceptors and how they conserve energy by anaerobic respiration. Our genome analysis indicates that the key genetic trait for homoacetogenesis is the core acs gene cluster of the Wood–Ljungdahl pathway.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75588/1/j.1462-2920.2008.01679.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/75588/2/EMI_1679_sm_Table_S1-S7_and_Figure_S1-S7.pd

    <i>Performative reading in the late Byzantine</i> theatron

    Get PDF

    Mapping Agility to Automotive Software Product Line Concerns

    No full text
    Context: Software product lines are widely used in automotive embedded software development. This software paradigm improves the quality of software variants by reuse. The combination of agile software development practices with software product lines promises a faster delivery of high quality software. However, the set up of an agile software product line is still challenging, especially in the automotive domain. Goal: This publication aims to evaluate to what extend agility fits to automotive product line engineering. Method: Based on previous work and two workshops, agility is mapped to software product line concerns. Results: This publication presents important principles of software product lines, and examines how agile approaches fit to those principles. Additionally, the principles are related to one of the four major concerns of software product line engineering: Business, Architecture, Process, and Organization. Conclusion: Agile software product line engineering is promising and can add value to existing development approaches. The identified commonalities and hindering factors need to be considered when defining a combined agile product line engineering approach

    4. Der lateinische Text der Historia

    No full text

    Literaturverzeichnis

    No full text
    corecore