501 research outputs found
Seroprevalence of five neglected parasitic diseases among immigrants accessing five infectious and tropical diseases units in Italy: a cross-sectional study.
: This multicentre cross-sectional study aims to estimate the prevalence of five neglected tropical diseases (Chagas disease, filariasis, schistosomiasis, strongyloidiasis, toxocariasis) among immigrants accessing health care facilities in five Italian cities (Bologna, Brescia, Florence, Rome, Verona). : Individuals underwent a different set of serological tests, according to country of origin and presence of eosinophilia. Seropositive patients were treated and further followed up. : A total of 930 adult immigrants were enrolled: 477 men (51.3%), 445 women (47.9%), 8 transgender (0.8%); median age was 37.81 years (range 18-80). Most of them were coming from the African continent (405/930, 43.5%), the rest from East Europe, South America and Asia. A portion of 9.6% (89/930) were diagnosed with at least one of the infections under study. Seroprevalence of each specific infection varied from 3.9% (7/180) for Chagas diseases to 9.7% (11/113) for toxocariasis. Seropositive people were more likely to be 35 to 40 years-old male and to come from South East Asia, Sub-Saharan Africa or South America. : The results of our study confirm that neglected tropical diseases represent a substantial health problem among immigrants and highlight the need for addressing this emerging public health issue.<br/
Identifying physiological measures of lifetime welfare status in pigs: exploring the usefulness of haptoglobin, C-reactive protein and hair cortisol sampled at the time of slaughter
Background: Physiological measures indicative of the welfare status of animals during rearing could form part of an abattoir-based animal health and welfare assessment tool. A total of 66 pigs were used in this study, the aim of which was to assess how serum concentrations of haptoglobin (Hp) and C-reactive protein (CRP) (assessed in 51 pigs), and hair concentrations of cortisol (assessed in 65 pigs), measured at or close to slaughter, reflected welfare-related indicators recorded from the animal during its lifetime. These indicators were recorded at intervals between 7 and 21 weeks of age and included assigning scores for levels of tail and skin lesions, recording the presence or absence of certain health issues, and conducting qualitative behavioural assessments (QBA).
Results: Pigs recorded as having tail lesions during their lifetime had higher hair cortisol levels than those with no tail lesions (tail lesions: 47.87 ± 3.34 pg/mg, no tail lesions: 42.20 ± 3.29 pg/mg, P = 0.023), and pigs recorded as having moderate or severe tail lesions had higher Hp levels than those with no or mild tail lesions (moderate/severe: 1.711 mg/ml ± 0.74, none/mild: 0.731 mg/ml ±0.10, P = 0.010). Pigs recorded as being lame during their lifetime tended to have higher hair cortisol levels than non-lame pigs (lame: 52.72 pg/mg ± 3.83, not lame: 43.07 pg/mg ± 2.69, P = 0.062). QBA scores were not associated with any of the physiological measures (P > 0.05). Receiver Operator Curve (ROC) analysis was also carried out to get a better understanding of the usefulness of the physiological measures in discriminating animals that had had welfare-related issues recorded during their lifetime from those that had not. Hair cortisol was determined as having ‘moderate’ accuracy in discriminating pigs that were tail bitten on-farm from unbitten pigs (AUC: 0.748) while Hp and CRP were determined to have no meaningful discriminatory ability (AUC < 0.600).
Conclusion: This research should be repeated on a larger scale, but the results suggest that hair cortisol measured at slaughter could provide insight into the welfare status of pigs during their lifetime. Hp may be a useful indicator of tail lesions in pigs. However, further research utilising a greater proportion of severely bitten pigs is required before conclusions can be drawn
Lentivirus-meditated frataxin gene delivery reverses genome instability in Friedreich ataxia patient and mouse model fibroblasts
Friedreich ataxia (FRDA) is a progressive neurodegenerative disease caused by deficiency of frataxin protein, with the primary sites of pathology being the large sensory neurons of the dorsal root ganglia and the cerebellum. FRDA is also often accompanied by severe cardiomyopathy and diabetes mellitus. Frataxin is important in mitochondrial iron–sulfur cluster (ISC) biogenesis and low-frataxin expression is due to a GAA repeat expansion in intron 1 of the FXN gene. FRDA cells are genomically unstable, with increased levels of reactive oxygen species and sensitivity to oxidative stress. Here we report the identification of elevated levels of DNA double strand breaks (DSBs) in FRDA patient and YG8sR FRDA mouse model fibroblasts compared to normal fibroblasts. Using lentivirus FXN gene delivery to FRDA patient and YG8sR cells, we obtained long-term overexpression of FXN mRNA and frataxin protein levels with reduced DSB levels towards normal. Furthermore, γ-irradiation of FRDA patient and YG8sR cells revealed impaired DSB repair that was recovered on FXN gene transfer. This suggests that frataxin may be involved in DSB repair, either directly by an unknown mechanism, or indirectly via ISC biogenesis for DNA repair enzymes, which may be essential for the prevention of neurodegeneration.Ataxia UK, FARA Australasia and FARA US
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Block of c-myc expression by antisense oligonucleotides inhibits proliferation of human thyroid carcinoma cell lines
The Role of Rab3a in Secretory Vesicle Docking Requires Association/Dissociation of Guanidine Phosphates and Munc18-1
Rab3a is a small GTPase that binds selectively to secretory vesicles and switches between active, GTP-bound and inactive, GDP-bound conformations. In yeast, Rab and SM-genes interact genetically to promote vesicle targeting/fusion. We tested different Rab3a conformations and genetic interactions with the SM-gene munc18-1 on the docking function of Rab3a in mammalian chromaffin cells. We expressed Rab3a mutants locked in the GTP- or GDP-bound form in wild-type and munc18-1 null mutant cells and analyzed secretory vesicle distribution. We confirmed that wild-type Rab3a promotes vesicle docking in wild-type cells. Unexpectedly, both GTP- and GDP-locked Rab3a mutants did not promote docking. Furthermore, wild-type Rab3a did not promote docking in munc18-1 null cells and GTP- and GDP-Rab3a both decreased the amount of docked vesicles. The results show that GTP- and GDP-locked conformations do not support a Munc18-1 dependent role of Rab3a in docking. This suggests that nucleotide cycling is required to support docking and that this action of Rab3a is upstream of Munc18-1
Association between cancer prevalence and use of thiazolidinediones: results from the Vermont Diabetes Information System
<p>Abstract</p> <p>Background</p> <p>Peroxisome proliferator-activated receptors (PPARs) have emerged as important drug targets for diabetes. Drugs that activate PPARγ, such as the thiazolidinediones (TZDs), are widely used for treatment of Type 2 diabetes mellitus. PPARγ signaling could also play an anti-neoplastic role in several <it>in vitro </it>models, although conflicting results are reported from <it>in vivo </it>models. The effects of TZDs on cancer risk in humans needs to be resolved as these drugs are prescribed for long periods of time in patients with diabetes.</p> <p>Methods</p> <p>A total of 1003 subjects in community practice settings were interviewed at home at the time of enrolment into the Vermont Diabetes Information System, a clinical decision support program. Patients self-reported their personal and clinical characteristics, including any history of malignancy. Laboratory data were obtained directly from the clinical laboratory and current medications were obtained by direct observation of medication containers. We performed a cross-sectional analysis of the interviewed subjects to assess a possible association between cancer diagnosis and the use of TZDs.</p> <p>Results</p> <p>In a multivariate logistic regression model, a diagnosis of cancer was significantly associated with TZD use, even after correcting for potential confounders including other oral anti-diabetic agents (sulfonylureas and biguanides), age, glycosylated hemoglobin A1C, body mass index, cigarette smoking, high comorbidity, and number of prescription medications (odds ratio = 1.59, <it>P </it>= 0.04). This association was particularly strong among patients using rosiglitazone (OR = 1.89, <it>P </it>= 0.02), and among women (OR = 2.07, <it>P </it>= 0.01).</p> <p>Conclusion</p> <p>These data suggest an association between TZD use and cancer in patients with diabetes. Further studies are required to determine if this association is causal.</p
The First Cellular Models Based on Frataxin Missense Mutations That Reproduce Spontaneously the Defects Associated with Friedreich Ataxia
BACKGROUND:Friedreich ataxia (FRDA), the most common form of recessive ataxia, is due to reduced levels of frataxin, a highly conserved mitochondrial iron-chaperone involved in iron-sulfur cluster (ISC) biogenesis. Most patients are homozygous for a (GAA)(n) expansion within the first intron of the frataxin gene. A few patients, either with typical or atypical clinical presentation, are compound heterozygous for the GAA expansion and a micromutation. METHODOLOGY:We have developed a new strategy to generate murine cellular models for FRDA: cell lines carrying a frataxin conditional allele were used in combination with an EGFP-Cre recombinase to create murine cellular models depleted for endogenous frataxin and expressing missense-mutated human frataxin. We showed that complete absence of murine frataxin in fibroblasts inhibits cell division and leads to cell death. This lethal phenotype was rescued through transgenic expression of human wild type as well as mutant (hFXN(G130V) and hFXN(I154F)) frataxin. Interestingly, cells expressing the mutated frataxin presented a FRDA-like biochemical phenotype. Though both mutations affected mitochondrial ISC enzymes activities and mitochondria ultrastructure, the hFXN(I154F) mutant presented a more severe phenotype with affected cytosolic and nuclear ISC enzyme activities, mitochondrial iron accumulation and an increased sensitivity to oxidative stress. The differential phenotype correlates with disease severity observed in FRDA patients. CONCLUSIONS:These new cellular models, which are the first to spontaneously reproduce all the biochemical phenotypes associated with FRDA, are important tools to gain new insights into the in vivo consequences of pathological missense mutations as well as for large-scale pharmacological screening aimed at compensating frataxin deficiency
- …
