39 research outputs found

    CP12: Intrinsically Unstructured Proteins regulating photosynthetic enzymes through protein-protein interactions

    Get PDF

    Gravitational Lensing Effects on High Redshift Type II Supernova Studies with NGST

    Full text link
    We derive the expected Type II SN differential number counts, N(m), and Hubble diagram for SCDM and LCDM cosmological models, taking into account the effects of gravitational lensing (GL) produced by the intervening cosmological mass. The mass distribution of dark matter halos (ie the lenses) is obtained by means of a Monte Carlo method applied to the Press-Schechter mass function. The halos are assumed to have a NFW density profile, in agreement with recent simulations of hierarchical cosmological models. Up to z=15, the (SCDM, LCDM) models predict a total number of (857, 3656) SNII/yr in 100 surveyed 4' times 4' fields of the Next Generation Space Telescope. NGST will be able to reach the peak of the N(m) curve, located at AB approx 30(31) for SCDM(LCDM) in J and K wavelength bands and detect (75%, 51%) of the above SN events. This will allow a detailed study of the early cosmic star formation history, as traced by SNIIe. N(m) is only very mildly affected by the inclusion of lensing effects. In addition, GL introduces a moderate uncertainty in the determination of cosmological parameters from Hubble diagrams, when these are pushed to higher zz. For example, for a ``true'' LCDM with (Omega_M= 0.4, Omega_Lambda=0.6), without proper account of GL, one would instead derive (Omega_{M}=0.36^{+0.15}_{-0.12}, Omega_{Lambda}=0.60^{+0.12}_{-0.24}). We briefly compare our results with previous similar work and discuss the limitations of the model.Comment: 19 pages including 6 figures. Accepted for publication in MNRA

    Engineering models for the design of long-lasting, sustainable, cost-efficient and climate-responsive pavements for Ashghal road projects in the State of Qatar

    Get PDF
    The planning, design, construction and management of modern transportation infrastructures is based on the use of continuously updated methodologies that consider, among others, the concept of sustainability. In such a context, for the specific case of road pavements, it is of crucial importance to carry out quantitative analyses based on the use of optimized engineering models. These models explicitly consider environment-pavement interactions, environmental impacts generated by all the components involved in the supply chain, and financial flows associated to pavement construction and maintenance. Such an approach is being adopted by the Public Works Authority (Ashghal) of the State of Qatar, that is developing and implementing models tailored for its infrastructure projects and local environmental conditions. This paper provides an overview of some of the employed models and methodologies that are based on the physics of pavement structures and on the assessment of environmental and economic indicators. It is shown that such an approach leads to significant improvements to current practice and to the enhanced use of recycled materials, while still guaranteeing required pavement performance

    The role of cysteine residues in redox regulation and protein stability of <i>Arabidopsis thaliana</i> starch synthase 1

    Get PDF
    Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences its catalytic function 2) that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated by the physiological redox transmitters thioredoxin f1 (Trxf1), thioredoxin m4 (Trxm4) and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC). AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1 is in the reduced and active form during the day with active photosynthesis. Cys164 and Cys545 were the key cysteine residues involved in regulatory disulfide formation upon oxidation. A C164S_C545S double mutant had considerably decreased redox sensitivity as compared to wild type AtSS1 (30% vs 77%). Michaelis-Menten kinetics and molecular modeling suggest that both cysteines play important roles in enzyme catalysis, namely, Cys545 is involved in ADP-glucose binding and Cys164 is involved in acceptor binding. All the other single mutants had essentially complete redox sensitivity (98-99%). In addition of being part of a redox directed activity "light switch", reactivation tests and low heterologous expression levels indicate that specific cysteine residues might play additional roles. Specifically, Cys265 in combination with Cys164 can be involved in proper protein folding or/and stabilization of translated protein prior to its transport into the plastid. Cys442 can play an important role in enzyme stability upon oxidation. The physiological and phylogenetic relevance of these findings is discussed

    Simulating the formation and evolution of galaxies: Multi-phase description of the interstellar medium, star formation, and energy feedback

    Full text link
    We present a multi-phase representation of the ISM in NB-TSPH simulations of galaxy formation and evolution with particular attention to the case of early-type galaxies. Cold gas clouds are described by the so-called sticky particles algorithm. They can freely move throughout the hot ISM medium; stars form within these clouds and the mass exchange among the three baryonic phases (hot gas, cold clouds, stars) is governed by radiative and Compton cooling and energy feedback by supernova (SN) explosions, stellar winds, and UV radiation. We also consider thermal conduction, cloud-cloud collisions, and chemical enrichment. Our model agrees with and improves upon previous studies on the same subject. The results for the star formation rate are very promising and agree with recent observational data on early-type galaxies. These models lend further support to the revised monolithic scheme of galaxy formation, which has recently been also strengthened by high redshift data leading to the so-called downsizing and top-down scenarios.Comment: 17 pages, 17 figure

    Thioredoxin-regulated ÎČ-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress

    Get PDF
    BAM1 is a plastid-targeted ÎČ-amylase of Arabidopsis thaliana specifically activated by reducing conditions. Among eight different chloroplast thioredoxin isoforms, thioredoxin f1 was the most efficient redox mediator, followed by thioredoxins m1, m2, y1, y2, and m4. Plastid-localized NADPH-thioredoxin reductase (NTRC) was also able partially to restore the activity of oxidized BAM1. Promoter activity of BAM1 was studied by reporter gene expression (GUS and YFP) in Arabidopsis transgenic plants. In young (non-flowering) plants, BAM1 was expressed both in leaves and roots, but expression in leaves was mainly restricted to guard cells. Compared with wild-type plants, bam1 knockout mutants were characterized by having more starch in illuminated guard cells and reduced stomata opening, suggesting that thioredoxin-regulated BAM1 plays a role in diurnal starch degradation which sustains stomata opening. Besides guard cells, BAM1 appears in mesophyll cells of young plants as a result of a strongly induced gene expression under osmotic stress, which is paralleled by an increase in total ÎČ-amylase activity together with its redox-sensitive fraction. Osmotic stress impairs the rate of diurnal starch accumulation in leaves of wild-type plants, but has no effect on starch accumulation in bam1 mutants. It is proposed that thioredoxin-regulated BAM1 activates a starch degradation pathway in illuminated mesophyll cells upon osmotic stress, similar to the diurnal pathway of starch degradation in guard cells that is also dependent on thioredoxin-regulated BAM1

    Feedback and metal enrichment in cosmological SPH simulations I. A model for chemical enrichment

    Get PDF
    We discuss a model for treating chemical enrichment by SNII and SNIa explosions in simulations of cosmological structure formation. Our model includes metal-dependent radiative cooling and star formation in dense collapsed gas clumps. Metals are returned into the diffuse interstellar medium by star particles using a local SPH smoothing kernel. A variety of chemical abundance patterns in enriched gas arise in our treatment owing to the different yields and lifetimes of SNII and SNIa progenitor stars. In the case of SNII chemical production, we adopt metal-dependent yields. Because of the sensitive dependence of cooling rates on metallicity, enrichment of galactic haloes with metals can in principle significantly alter subsequent gas infall and the build up of the stellar components. Indeed, in simulations of isolated galaxies we find that a consistent treatment of metal-dependent cooling produces 25% more stars outside the central region than simulations with a primordial cooling function. In the highly-enriched central regions, the evolution of baryons is however not affected by metal cooling, because here the gas is always dense enough to cool. A similar situation is found in cosmological simulations because we include no strong feedback processes which could spread metals over large distances and mix them into unenriched diffuse gas. We demonstrate this explicitly with test simulations which adopt super-solar cooling functions leading to large changes both in the stellar mass and in the metal distributions. We also find that the impact of metallicity on the star formation histories of galaxies may depend on their particular evolutionary history. Our results hence emphasise the importance of feedback processes for interpreting the cosmic metal enrichment.Comment: 15 pages, 15 figures, MNRAS, modified to match published versio

    Galaxy Formation Theory

    Full text link
    We review the current theory of how galaxies form within the cosmological framework provided by the cold dark matter paradigm for structure formation. Beginning with the pre-galactic evolution of baryonic material we describe the analytical and numerical understanding of how baryons condense into galaxies, what determines the structure of those galaxies and how internal and external processes (including star formation, merging, active galactic nuclei etc.) determine their gross properties and evolution. Throughout, we highlight successes and failings of current galaxy formation theory. We include a review of computational implementations of galaxy formation theory and assess their ability to provide reliable modelling of this complex phenomenon. We finish with a discussion of several "hot topics" in contemporary galaxy formation theory and assess future directions for this field.Comment: 58 pages, to appear in Physics Reports. This version includes minor corrections and a handful of additional reference

    Sex difference and intra-operative tidal volume: Insights from the LAS VEGAS study

    Get PDF
    BACKGROUND: One key element of lung-protective ventilation is the use of a low tidal volume (VT). A sex difference in use of low tidal volume ventilation (LTVV) has been described in critically ill ICU patients.OBJECTIVES: The aim of this study was to determine whether a sex difference in use of LTVV also exists in operating room patients, and if present what factors drive this difference.DESIGN, PATIENTS AND SETTING: This is a posthoc analysis of LAS VEGAS, a 1-week worldwide observational study in adults requiring intra-operative ventilation during general anaesthesia for surgery in 146 hospitals in 29 countries.MAIN OUTCOME MEASURES: Women and men were compared with respect to use of LTVV, defined as VT of 8 ml kg-1 or less predicted bodyweight (PBW). A VT was deemed 'default' if the set VT was a round number. A mediation analysis assessed which factors may explain the sex difference in use of LTVV during intra-operative ventilation.RESULTS: This analysis includes 9864 patients, of whom 5425 (55%) were women. A default VT was often set, both in women and men; mode VT was 500 ml. Median [IQR] VT was higher in women than in men (8.6 [7.7 to 9.6] vs. 7.6 [6.8 to 8.4] ml kg-1 PBW, P &lt; 0.001). Compared with men, women were twice as likely not to receive LTVV [68.8 vs. 36.0%; relative risk ratio 2.1 (95% CI 1.9 to 2.1), P &lt; 0.001]. In the mediation analysis, patients' height and actual body weight (ABW) explained 81 and 18% of the sex difference in use of LTVV, respectively; it was not explained by the use of a default VT.CONCLUSION: In this worldwide cohort of patients receiving intra-operative ventilation during general anaesthesia for surgery, women received a higher VT than men during intra-operative ventilation. The risk for a female not to receive LTVV during surgery was double that of males. Height and ABW were the two mediators of the sex difference in use of LTVV.TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, NCT01601223
    corecore