6 research outputs found

    Energy autonomous wireless sensing node working at 5 Lux from a 4 cm2 solar cell

    Get PDF
    Harvesting energy for IoT nodes in places that are permanently poorly lit is important, as many such places exist in buildings and other locations. The need for energy-autonomous devices working in such environments has so far received little attention. This work reports the design and test results of an energy-autonomous sensor node powered solely by solar cells. The system can cold-start and run in low light conditions (in this case 20 lux and below, using white LEDs as light sources). Four solar cells of 1 cm2 each are used, yielding a total active surface of 4 cm2. The system includes a capacitive sensor that acts as a touch detector, a crystal-accurate real-time clock (RTC), and a Cortex-M3-compatible microcontroller integrating a Bluetooth Low Energy radio (BLE) and the necessary stack for communication. A capacitor of 100 μF is used as energy storage. A low-power comparator monitors the level of the energy storage and powers up the system. The combination of the RTC and touch sensor enables the MCU load to be powered up periodically or using an asynchronous user touch activity. First tests have shown that the system can perform the basic work of cold-starting, sensing, and transmitting frames at +0 dBm, at illuminances as low as 5 lux. Harvesting starts earlier, meaning that the potential for full function below 5 lux is present. The system has also been tested with other light sources. The comparator is a test chip developed for energy harvesting. Other elements are off-the-shelf components. The use of commercially available devices, the reduced number of parts, and the absence of complex storage elements enable a small node to be built in the future, for use in constantly or intermittently poorly lit places

    ANTARES: the first undersea neutrino telescope

    Get PDF
    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given

    Batteryless sensor devices for underground infrastructure : a long-term experiment on urban water pipes

    No full text
    Drinking water is becoming increasingly scarce as the world’s population grows and climate change continues. However, there is great potential to improve drinking water pipelines, as 30% of fresh water is lost between the supplier and consumer. While systematic process monitoring could play a crucial role in the early detection and repair of leaks, current practice requires manual inspection, which is both time-consuming and costly. This project envisages maintenance-free measurements at numerous locations within the underground infrastructure, a goal that is to be achieved through the use of a harvesting device mounted on the water pipe. This device extracts energy from the temperature difference between the water pipe and the soil using a TEG (thermoelectric generator), takes sensor measurements, processes the data and transmits it wirelessly via LoRaWAN. We built 16 harvesting devices, installed them in four locations and continuously evaluated their performance throughout the project. In this paper, we focus on two devices of a particular type. The data for a full year show that enough energy was available on 94% of the days, on average, to take measurements and transmit data. This study demonstrates that it is possible to power highly constrained sensing devices with energy harvesting in underground environments

    Batteryless Sensor Devices for Underground Infrastructure-A Long-Term Experiment on Urban Water Pipes

    Get PDF
    Drinking water is becoming increasingly scarce as the world's population grows and climate change continues. However, there is great potential to improve drinking water pipelines, as 30% of fresh water is lost between the supplier and consumer. While systematic process monitoring could play a crucial role in the early detection and repair of leaks, current practice requires manual inspection, which is both time-consuming and costly. This project envisages maintenance-free measurements at numerous locations within the underground infrastructure, a goal that is to be achieved through the use of a harvesting device mounted on the water pipe. This device extracts energy from the temperature difference between the water pipe and the soil using a TEG (thermoelectric generator), takes sensor measurements, processes the data and transmits it wirelessly via LoRaWAN. We built 16 harvesting devices, installed them in four locations and continuously evaluated their performance throughout the project. In this paper, we focus on two devices of a particular type. The data for a full year show that enough energy was available on 94% of the days, on average, to take measurements and transmit data. This study demonstrates that it is possible to power highly constrained sensing devices with energy harvesting in underground environments.ISSN:2079-926

    Energy Autonomous Wireless Sensing Node Working at 5 Lux from a 4 cm2 Solar Cell

    No full text
    Harvesting energy for IoT nodes in places that are permanently poorly lit is important, as many such places exist in buildings and other locations. The need for energy-autonomous devices working in such environments has so far received little attention. This work reports the design and test results of an energy-autonomous sensor node powered solely by solar cells. The system can cold-start and run in low light conditions (in this case 20 lux and below, using white LEDs as light sources). Four solar cells of 1 cm2 each are used, yielding a total active surface of 4 cm2. The system includes a capacitive sensor that acts as a touch detector, a crystal-accurate real-time clock (RTC), and a Cortex-M3-compatible microcontroller integrating a Bluetooth Low Energy radio (BLE) and the necessary stack for communication. A capacitor of 100 μF is used as energy storage. A low-power comparator monitors the level of the energy storage and powers up the system. The combination of the RTC and touch sensor enables the MCU load to be powered up periodically or using an asynchronous user touch activity. First tests have shown that the system can perform the basic work of cold-starting, sensing, and transmitting frames at +0 dBm, at illuminances as low as 5 lux. Harvesting starts earlier, meaning that the potential for full function below 5 lux is present. The system has also been tested with other light sources. The comparator is a test chip developed for energy harvesting. Other elements are off-the-shelf components. The use of commercially available devices, the reduced number of parts, and the absence of complex storage elements enable a small node to be built in the future, for use in constantly or intermittently poorly lit places

    D. Die einzelnen romanischen Sprachen und Literaturen.

    No full text
    corecore