11 research outputs found

    Characterization and mitigation of gene expression burden in mammalian cells

    Get PDF
    Despite recent advances in circuit engineering, the design of genetic networks in mammalian cells is still painstakingly slow and fraught with inexplicable failures. Here, we demonstrate that transiently expressed genes in mammalian cells compete for limited transcriptional and translational resources. This competition results in the coupling of otherwise independent exogenous and endogenous genes, creating a divergence between intended and actual function. Guided by a resource-aware mathematical model, we identify and engineer natural and synthetic miRNA-based incoherent feedforward loop (iFFL) circuits that mitigate gene expression burden. The implementation of these circuits features the use of endogenous miRNAs as elementary components of the engineered iFFL device, a versatile hybrid design that allows burden mitigation to be achieved across different cell-lines with minimal resource requirements. This study establishes the foundations for context-aware prediction and improvement of in vivo synthetic circuit performance, paving the way towards more rational synthetic construct design in mammalian cells

    Hepatitis C treatment outcomes in Australian clinics

    No full text
    Objective: To determine hepatitis C (HCV) treatment effectiveness and predictors of response in the “real-world” Australian clinic setting.Design, setting and participants: Patients with chronic HCV, who were HCV-treatment-naive at enrolment, and were then treated with standard therapy (pegylated interferon-α plus ribavirin), were recruited prospectively through a national network of 24 HCV clinics between April 2008 and December 2009. Patients were interviewed and a medical record review was conducted at enrolment and at routine follow-up clinic visits.Main outcome measures: Proportion of patients achieving a sustained virological response (SVR), predictors of SVR, and impact of treatment on biochemical markers of liver disease (alanine aminotransferase levels and aspartate aminotransferase-to-platelet ratio index scores).Results: The SVR by intention to treat was 60% (327/550). Infection with HCV genotype 2 or 3 (compared with genotype 1) was an independent predictor of SVR (odds ratio [OR], 2.45; 95% CI, 1.70–3.52), while HIV coinfection (OR, 0.28; 95% CI, 0.10–0.82), cirrhosis (OR, 0.38; 95% CI, 0.18–0.81), and increased body mass index for ≥ 30 kg/m2 v ≤ 25 kg/m2 (OR, 0.58; 95% CI, 0.35–0.96) were independently associated with lower SVR. There was a significant improvement in biochemical markers of liver disease following SVR (

    The Impact of Genome-Wide Supported Schizophrenia Risk Variants in the Neurogranin Gene on Brain Structure and Function

    Get PDF
    The neural mechanisms underlying genetic risk for schizophrenia, a highly heritable psychiatric condition, are still under investigation. New schizophrenia risk genes discovered through genome-wide association studies (GWAS), such as neurogranin (NRGN), can be used to identify these mechanisms. In this study we examined the association of two common NRGN risk single nucleotide polymorphisms (SNPs) with functional and structural brain-based intermediate phenotypes for schizophrenia. We obtained structural, functional MRI and genotype data of 92 schizophrenia patients and 114 healthy volunteers from the multisite Mind Clinical Imaging Consortium study. Two schizophrenia-associated NRGN SNPs (rs12807809 and rs12541) were tested for association with working memory-elicited dorsolateral prefrontal cortex (DLPFC) activity and surface-wide cortical thickness. NRGN rs12541 risk allele homozygotes (TT) displayed increased working memory-related activity in several brain regions, including the left DLPFC, left insula, left somatosensory cortex and the cingulate cortex, when compared to non-risk allele carriers. NRGN rs12807809 non-risk allele (C) carriers showed reduced cortical gray matter thickness compared to risk allele homozygotes (TT) in an area comprising the right pericalcarine gyrus, the right cuneus, and the right lingual gyrus. Our study highlights the effects of schizophrenia risk variants in the NRGN gene on functional and structural brain-based intermediate phenotypes for schizophrenia. These results support recent GWAS findings and further implicate NRGN in the pathophysiology of schizophrenia by suggesting that genetic NRGN risk variants contribute to subtle changes in neural functioning and anatomy that can be quantified with neuroimaging methods.National Institutes of Health (U.S.) (NIH/NCRR P41RR14075)United States. Dept. of Energy (DE-FG02-99ER62764)Biomedical Informatics Research Network (Mind Research Network, Morphometry 1U24, RR021382A

    Coal, Cotton and Rock ‘n’ Roll in North West England

    No full text

    References

    No full text
    corecore