413 research outputs found

    Evidence for non-hadronic interactions of charm degrees of freedom in heavy-ion collisions at relativistic energies

    Full text link
    Within the Hadron-String Dynamics (HSD) transport approach we study the suppression pattern of charmonia at RHIC with respect to centrality and rapidity employing various model concepts such as variants of the 'comover absorption' model or the 'charmonium melting' scenario. We find that especially the ratio of the forward to mid-rapidity nuclear modification factors of J/Psi (R_AA (forward) / R_AA (mid)) cannot be explained by the interactions with 'formed' comoving mesons or by the 'color screening mechanism' alone. Only when incorporating interactions of the c or c-bar quark with a pre-hadronic medium satisfactory results are obtained. A detailed comparison to the PHENIX data demonstrates that non-hadronic interactions are mandatory to describe the narrowing of the J/Psi rapidity distribution from p+p to central Au+Au collisions. The Psi' to J/Psi ratio is found to be crucial in disentangling the different charmonium absorption scenarios especially in the RHIC energy range. Furthermore, a comparison of the transport calculations to the statistical model of Gorenstein and Gazdzicki as well as the statistical hadronization model of Andronic et al. shows differences in the energy dependence as well as centrality dependence of the J/Psi to pion ratio which may be exploited experimentally to disentangle different concepts. We find additionally that the collective flow of charm in the HSD transport appears compatible with the data at SPS energies but substantially underestimates the data at top RHIC energies such that the large elliptic flow v_2 of charm seen experimentally has to be attributed to early interactions of non-hadronic degrees of freedom.Comment: 35 pages, 16 Figs, v2: additional figure and corresponding changes to the tex

    Robust model-based indicators of regional differences in food-web structure in the Southern Ocean

    Get PDF
    Efforts to model marine food-webs are generally undertaken by small teams working separately on specific regions (<106 km2) and making independent decisions about how to deal with data gaps and uncertainties. Differences in these largely arbitrary decisions (which we call ‘model personality’) can potentially obscure true differences between regional food-webs or lead to spurious differences. Here we explore the influence of model personality on a comparison of four Southern Ocean regional food-web models. We construct alternative model versions which sequentially remove aspects of personality (alternative model ‘currencies’, schemes for aggregating organisms into functional groups, and energetic parameter values). These alternative versions preserve regional differences in biomass and feeding relationships. Variation in a set of model metrics that are insensitive to absolute biomass and production identifies multiple regional contrasts, a subset of which are robust to differences in model personality. These contrasts imply real differences in ecosystem structure which, in conjunction with differences in primary production and consumer biomass (spanning two and four orders of magnitude respectively), underpin differences in function. Existing regional models are therefore a useful resource for comparing ecosystem structure, function and response to change if comparative studies assess and report the influence of model personality

    J/Psi suppression in colliding nuclei: statistical model analysis

    Full text link
    We consider the J/ΨJ/\Psi suppression at a high energy heavy ion collision. An ideal gas of massive hadrons in thermal and chemical equilibrium is formed in the central region. The finite-size gas expands longitudinally in accordance with Bjorken law. The transverse expansion in a form of the rarefaction wave is taken into account. We show that J/ΨJ/\Psi suppression in such an environment, when combined with the disintegration in nuclear matter, gives correct evaluation of NA38 and NA50 data in a broad range of initial energy densities.Comment: 14 pages, 13 figures. Accepted for publication in Phys. Rev.

    Charmonium dynamics in nucleus-nucleus collisions at SPS and FAIR energies

    Get PDF
    Charmonium production and suppression in In+In and Pb+Pb reactions at SPS energies is investigated with the HSD transport approach within the 'hadronic comover model' as well as the 'QGP threshold scenario'. The results of the transport calculations for J/Psi suppression and the Psi prime to J/Psi ratio are compared with the recent data of the NA50 and NA60 Collaborations. We find that the comover absorption model - with a single parameter |M_0|^2 for the matrix element squared for charmonium-meson dissociation - performs best with respect to all data sets. The 'threshold scenario' - within different assumptions for the melting energy densities - yields a reasonable suppression for J/Psi but fails in reproducing the Psi prime to J/Psi ratio for Pb+Pb at 158 A GeV. Predictions for Au+Au reactions are presented for a bombarding energy of 25 A GeV in the different scenarios which will allow for a clear distinction between the models from the experimental side at the future FAIR facility.Comment: 22 pages, 10 figures. v2: comments added according to referee suggestions; references updated; Nucl. Phys. A, in pres

    Excitation functions of hadronic observables from SIS to RHIC energies

    Full text link
    We calculate excitation functions for various dynamical quantities as well as experimental observables from SIS to RHIC energies within the HSD transport approach which is based on string, quark, diquark (q,qˉ,qq,qˉqˉq, \bar{q}, qq, \bar{q}\bar{q}) and hadronic degrees of freedom without including any explicit phase transition to a quark-gluon plasma (QGP). It is argued that the failure of this more 'conventional' approach in comparison to experimental data should indicate the presence of a different phase which might be either attributed to space-time regions of vanishing scalar quark condensate ( = 0) or to the presence of a QGP phase with strongly interacting partons. We study the K/πK/\pi ratio, the low mass dilepton enhancement in the invariant mass regime from 0.2 -- 1.2 GeV as well as charmonium suppression for central Au + Au collisions as a function of the bombarding energy and present predictions for these observables as well as hadron rapiditiy distributions at RHIC energies. Whereas all observables studied within HSD show smooth increasing/decreasing excitation functions, the experimental K+/π+K^+/\pi^+ ratio indicates a maximum at 11 A\cdotGeV (or above) which is interpreted as a signature for a chirally restored phase in the course of the reaction.Comment: 34 pages, LaTeX, including 14 postscript figures (high quality color versions of figs. 3,4 are available from http://theorie.physik.uni-giessen.de/~brat/own.html), Nucl. Phys.

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore