93 research outputs found

    E-Cadherin Expression Is Regulated by miR-192/215 by a Mechanism That Is Independent of the Profibrotic Effects of Transforming Growth Factor-ÎČ

    Get PDF
    OBJECTIVE--Increased deposition of extracellular matrix (ECM) within the kidney is driven by profibrotic mediators including transforming growth factor-[beta] (TGF-[beta]) and connective tissue growth factor (CTGF). We investigated whether some of their effects may be mediated through changes in expression of certain microRNAs (miRNAs). RESEARCH DESIGN AND METHODS--Proximal tubular cells, primary rat mesangial cells, and human podocytes were analyzed for changes in the expression of key genes, ECM proteins, and miRNA after exposure to TGF-[beta] (1-10 ng/[micro]l). Tubular cells were also infected with CTGF-adenovirus. Kidneys from diabetic apoE mice were also analyzed for changes in gene expression and miRNA levels. RESULTS--TGF-[beta] treatment was associated with morphologic and phenotypic changes typical of epithelial-mesenchymal transition (EMT) including increased fibrogenesis in all renal cell types and decreased E-cadherin expression in tubular cells. TGF-[beta] treatment also modulated the expression of certain miRNAs, including decreased expression of miR-192/215 in tubular cells, mesangial cells, which are also decreased in diabetic kidney. Ectopic expression of miR-192/215 increased E-cadherin levels via repressed translation of ZEB2 mRNA, in the presence and absence of TGF-[beta], as demonstrated by a ZEB2 3'-untranslated region luciferase reporter assay. However, ectopic expression of miR-192/215 did not affect the expression of matrix proteins or their induction by TGF-[beta]. In contrast, CTGF increased miR-192/215 levels, causing a decrease in ZEB2, and consequently increased E-cadherin mRNA. CONCLUSIONS--These data demonstrate the linking role of miRNA-192/215 and ZEB2 in TGF-[beta]/CTGF-mediated changes in E-cadherin expression. These changes appear to occur independently of augmentation of matrix protein synthesis, suggesting that a multistep EMT program is not necessary for fibrogenesis to occur.Bo Wang, Michal Herman-Edelstein, Philip Koh, Wendy Burns, Karin Jandeleit-Dahm, Anna Watson, Moin Saleem, Gregory J. Goodall, Stephen M. Twigg, Mark E. Cooper and Phillip Kantharidi

    Dedifferentiation of Immortalized Human Podocytes in Response to Transforming Growth Factor-ÎČ: A Model for Diabetic Podocytopathy

    Get PDF
    OBJECTIVE: Diabetic nephropathy is associated with dedifferentiation of podocytes, losing the specialized features required for efficient glomerular function and acquiring a number of profibrotic, proinflammatory, and proliferative features. These result from tight junction and cytoskeletal rearrangement, augmented proliferation, and apoptosis. RESEARCH DESIGN AND METHODS: Experiments were performed in conditionally immortalized human podocytes developed by transfection with the temperature-sensitive SV40-T gene. Cells were then cultured in the presence of transforming growth factor (TGF)-ÎČ1 or angiotensin II in the presence or absence of a selective inhibitor of the TGF-ÎČ type I receptor kinase, SB-431542. Gene and protein expression were then examined by real-time RT-PCR and immunofluorescence, and correlated with changes observed in vivo in experimental diabetes. RESULTS: Treatment of cells with TGF-ÎČ1 resulted in dynamic changes in their morphology, starting with retraction and shortening of foot processes and finishing with the formation of broad and complex tight junctions between adjacent podocytes. This dedifferentiation was also associated with dose- and time-dependent reduction in the expression of glomerular epithelial markers (nephrin, p-cadherin, zonnula occludens-1) and increased expression of mesenchymal markers (α-smooth muscle actin, vimentin, nestin), matrix components (fibronectin, collagen I, and collagen IV α3), cellular proliferation, and apoptosis. The induction of diabetes in mice was also associated with similar changes in morphology, protein expression, and proliferation in glomerular podocytes. CONCLUSIONS: In response to TGF-ÎČ and other TGF-dependent stimuli, mature podocytes undergo dedifferentiation that leads to effacement of foot processes, morphologic flattening, and increased formation of intercellular tight junctions. This simplification of their phenotype to a more embryonic form is also associated with reentry of mature podocytes into the cell cycle, which results in enhanced proliferation and apoptosis. These "pathoadaptive" changes are seen early in the diabetic glomerulus and ultimately contribute to albuminuria, glomerulosclerosis, and podocytopenia

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore