3,325 research outputs found

    Effect of caffeinated gum on a battery of rugby-specific tests in trained university-standard male rugby union players

    Get PDF
    BACKGROUND: Caffeine has been shown to enhance strength, power and endurance, characteristics that underpin performance in rugby. Caffeinated gum has attracted interest as a novel vehicle for delivering caffeine, because absorption of caffeine from gum is quick. Rapid absorption of caffeine may be useful during rugby matches when there is limited time for supplementation such as at half-time or when substitutes enter play. The purpose of this study was to determine whether a low dose of caffeine in gum improves performance in a battery of rugby-specific tests. METHODS: In a double-blind, randomized, placebo-controlled, crossover design, 17 male university-standard rugby players (mass: 85.6 ± 6.3 kg; height: 179.4 ± 6.2 cm; age: 20.4 ± 1.2 years) chewed caffeinated gum (200 mg caffeine) or a placebo gum on two occasions separated by a week. After a standardized warm-up, gum was chewed for 5 min. Subsequently, participants performed three countermovement jumps, followed by an Illinois agility test, 6 × 30 m repeated sprints, and the Yo-Yo IR-2 test; each test was separated by short rest periods. RESULTS: Caffeinated gum enhanced countermovement jump by 3.6% (caffeine: 43.7 ± 7.6 cm vs. placebo: 42.2 ± 6.2 cm; d = 0.22, 95% CI [0.006, 0.432]; p = 0.044). There was a greater resistance to fatigue during the 6 × 30 m repeated sprint test (fatigue index caffeine: 102.2 ± 0.9% vs. placebo: 103.3 ± 1.2%; d = 1.03, 95% CI [0.430, 1.613]; p = 0.001), and performance on the Yo-Yo IR2 was improved by 14.5% (caffeine: 426 ± 105 m, placebo: 372 ± 91 m; d = 0.55, 95% CI [0.130, 0.957]; p = 0.010). Caffeine gum had no significant effect on the Illinois agility test (caffeine 16.22 ± 1.08 s vs. placebo 15.88 ± 1.09 s; d = - 0.31, 95% CI [- 0.855, 0.240]; p = 0.271). CONCLUSIONS: In university-standard rugby players, a low dose of caffeine (200 mg) supplied in chewing gum enhanced performance on the Yo-Yo IR-2 test and the countermovement jump test and reduced fatigue index during repeated sprints. These improvements in a battery of rugby-specific tests may transfer to enhanced performance in rugby matches

    Putting sharks on the map: A global standard for improving shark area-based conservation

    Get PDF
    Area-based conservation is essential to safeguard declining biodiversity. Several approaches have been developed for identifying networks of globally important areas based on the delineation of sites or seascapes of importance for various elements of biodiversity (e.g., birds, marine mammals). Sharks, rays, and chimaeras are facing a biodiversity crisis with an estimated 37% of species threatened with extinction driven by overfishing. Yet spatial planning tools often fail to consider the habitat needs critical for their survival. The Important Shark and Ray Area (ISRA) approach is proposed as a response to the dire global status of sharks, rays, and chimaeras. A set of four globally standardized scientific criteria, with seven sub-criteria, was developed based on input collated during four shark, biodiversity, and policy expert workshops conducted in 2022. The ISRA Criteria provide a framework to identify discrete, three-dimensional portions of habitat important for one or more shark, ray, or chimaera species, that have the potential to be delineated and managed for conservation. The ISRA Criteria can be applied to all environments where sharks occur (marine, estuarine, and freshwater) and consider the diversity of species, their complex behaviors and ecology, and biological needs. The identification of ISRAs will guide the development, design, and application of area-based conservation initiatives for sharks, rays, and chimaeras, and contribute to their recovery

    Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium "<em>Chlorochromatium aggregatum</em>"

    Get PDF
    BACKGROUND: ‘Chlorochromatium aggregatum’ is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. ‘Chlorochromatium aggregatum’ is a motile, barrel-shaped aggregate formed from a single cell of ‘Candidatus Symbiobacter mobilis”, a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium. RESULTS: We analyzed the complete genome sequences of both organisms to understand the basis for this symbiosis. Chl. chlorochromatii has acquired relatively few symbiosis-specific genes; most acquired genes are predicted to modify the cell wall or function in cell-cell adhesion. In striking contrast, ‘Ca. S. mobilis’ appears to have undergone massive gene loss, is probably no longer capable of independent growth, and thus may only reproduce when consortia divide. A detailed model for the energetic and metabolic bases of the dependency of ‘Ca. S. mobilis’ on Chl. chlorochromatii is described. CONCLUSIONS: Genomic analyses suggest that three types of interactions lead to a highly sophisticated relationship between these two organisms. Firstly, extensive metabolic exchange, involving carbon, nitrogen, and sulfur sources as well as vitamins, occurs from the epibiont to the central bacterium. Secondly, ‘Ca. S. mobilis’ can sense and move towards light and sulfide, resources that only directly benefit the epibiont. Thirdly, electron cycling mechanisms, particularly those mediated by quinones and potentially involving shared protonmotive force, could provide an important basis for energy exchange in this and other symbiotic relationships

    Early Increase in Extrasynaptic NMDA Receptor Signaling and Expression Contributes to Phenotype Onset in Huntington's Disease Mice

    Get PDF
    SummaryN-methyl-D-aspartate receptor (NMDAR) excitotoxicity is implicated in the pathogenesis of Huntington's disease (HD), a late-onset neurodegenerative disorder. However, NMDARs are poor therapeutic targets, due to their essential physiological role. Recent studies demonstrate that synaptic NMDAR transmission drives neuroprotective gene transcription, whereas extrasynaptic NMDAR activation promotes cell death. We report specifically increased extrasynaptic NMDAR expression, current, and associated reductions in nuclear CREB activation in HD mouse striatum. The changes are observed in the absence of dendritic morphological alterations, before and after phenotype onset, correlate with mutation severity, and require caspase-6 cleavage of mutant huntingtin. Moreover, pharmacological block of extrasynaptic NMDARs with memantine reversed signaling and motor learning deficits. Our data demonstrate elevated extrasynaptic NMDAR activity in an animal model of neurodegenerative disease. We provide a candidate mechanism linking several pathways previously implicated in HD pathogenesis and demonstrate successful early therapeutic intervention in mice

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    corecore