172 research outputs found

    Modeling Light for Platanus Occidentalis (American Sycamore) Trees in the DePauw Quarry

    Get PDF
    Platanus Occidentalis, characterized by shedding bark and ball-shaped seed pods, is native to much of the mid-southeastern US, and is commonly used as an ornamental tree. Individuals growing in the quarry of DePauw’s Nature Park are often small, discolored, or even dying. We used devices to measure the UV and Photosynthetically Active Radiation present at the locations of 70 random trees. We then used known sun path equations and GIS to start to develop a way to estimate the maximum amount of time a plant experiences full sun in different locations in the quarry relative to the quarry walls

    ORAL COMMUNICATIONS

    No full text

    Search for Bc+π+μ+μB_c^+\to\pi^+\mu^+\mu^- decays and measurement of the branching fraction ratio B(Bc+ψ(2S)π+)/B(Bc+J/ψπ+){\cal B}(B_c^+\to\psi(2S)\pi^+)/{\cal B}(B_c^+\to J/\psi \pi^+)

    No full text
    International audienceThe first search for nonresonant Bc+π+μ+μB_c^+\to\pi^+\mu^+\mu^- decays is reported. The analysis uses proton-proton collision data collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9 fb1^{-1}. No evidence for an excess of signal events over background is observed and an upper limit is set on the branching fraction ratio B(Bc+π+μ+μ)/B(Bc+J/ψπ+)<2.1×104{\cal B}(B_c^+\to\pi^+\mu^+\mu^-)/{\cal B}(B_c^+\to J/\psi \pi^+) < 2.1\times 10^{-4} at 90%90\% confidence level. Additionally, an updated measurement of the ratio of the Bc+ψ(2S)π+B_c^+\to\psi(2S)\pi^+ and Bc+J/ψπ+B_c^+\to J/\psi \pi^+ branching fractions is reported. The ratio B(Bc+ψ(2S)π+)/B(Bc+J/ψπ+){\cal B}(B_c^+\to\psi(2S)\pi^+)/{\cal B}(B_c^+\to J/\psi \pi^+) is measured to be 0.254±0.018±0.003±0.0050.254\pm 0.018 \pm 0.003 \pm 0.005, where the first uncertainty is statistical, the second systematic, and the third is due to the uncertainties on the branching fractions of the leptonic J/ψJ/\psi and ψ(2S)\psi(2S) decays. This measurement is the most precise to date and is consistent with previous LHCb results

    Helium identification with LHCb

    No full text
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pppp collision data at s=13TeV\sqrt{s}=13\,{\rm TeV} recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5fb15.5\,{\rm fb}^{-1}. A total of around 10510^5 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50%50\% with a corresponding background rejection rate of up to O(1012)\mathcal O(10^{12}). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Study of Bc+χcπ+B_c^+ \rightarrow \chi_c \pi^+ decays

    No full text
    International audienceA study of Bc+χcπ+B_c^+ \rightarrow \chi_c \pi^+ decays is reported using proton-proton collision data, collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9fb1^{-1}. The decay Bc+χc2π+B_c^+ \rightarrow \chi_{c2} \pi^+ is observed for the first time, with a significance exceeding seven standard deviations. The relative branching fraction with respect to the Bc+J/ψπ+B_c^+ \rightarrow J/\psi \pi^+ decay is measured to be BBc+χc2π+BBc+J/ψπ+=0.37±0.06±0.02±0.01, \frac{\mathcal{B}_{B_c^+ \rightarrow \chi_{c2} \pi^+}} {\mathcal{B}_{B_c^+ \rightarrow J/\psi \pi^+}} = 0.37 \pm 0.06 \pm 0.02 \pm 0.01 , where the first uncertainty is statistical, the second is systematic, and the third is due to the knowledge of the χcJ/ψγ\chi_c \rightarrow J/\psi \gamma branching fraction. No significant Bc+χc1π+B_c^+ \rightarrow \chi_{c1} \pi^+ signal is observed and an upper limit for the relative branching fraction for the Bc+χc1π+B_c^+ \rightarrow \chi_{c1} \pi^+ and Bc+χc2π+B_c^+ \rightarrow \chi_{c2} \pi^+ decays of BBc+χc1π+BBc+χc2π+<0.49 \frac{\mathcal{B}_{B_c^+ \rightarrow \chi_{c1} \pi^+}} {\mathcal{B}_{B_c^+ \rightarrow \chi_{c2} \pi^+}} < 0.49 is set at the 90% confidence level

    Transverse polarisation measurement of Λ\Lambda hyperons in ppNe collisions at sNN\sqrt{s_{NN}}=68.4 GeV with the LHCb detector

    No full text
    A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda}hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}}=68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λpπ\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019(stat)±0.012(syst), P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023(stat)±0.014(syst) P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \, Furthermore, the results are shown as a function of the Feynman xx variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements.A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda} hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}} = 68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λpπ\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019(stat)±0.012(syst), P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023(stat)±0.014(syst). P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \,. Furthermore, the results are shown as a function of the Feynman~xx~variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements

    Search for the Bs0μ+μγB_s^0 \rightarrow \mu^+\mu^-\gamma decay

    No full text
    International audienceA search for the fully reconstructed Bs0μ+μγB_s^0 \rightarrow \mu^+\mu^-\gamma decay is performed at the LHCb experiment using proton-proton collisions at s=13\sqrt{s}=13 TeV corresponding to an integrated luminosity of 5.4fb15.4\,\mathrm{fb^{-1}}. No significant signal is found and upper limits on the branching fraction in intervals of the dimuon mass are set \begin{align} {\cal B}(B_s^0 \rightarrow \mu^+\mu^-\gamma) < 4.2\times10^{-8},~&m(\mu\mu)\in[2m_\mu,~1.70]\,\mathrm{GeV/c^2} ,\nonumber {\cal B}(B_s^0 \rightarrow \mu^+\mu^-\gamma) < 7.7\times10^{-8},~&m(\mu\mu)\in[1.70,~2.88]\,\mathrm{GeV/c^2},\nonumber {\cal B}(B_s^0 \rightarrow \mu^+\mu^-\gamma) < 4.2\times10^{-8},~&m(\mu\mu)\in[3.92 ,~m_{B_s^0}]\,\mathrm{GeV/c^2},\nonumber \end{align} at 95% confidence level. Additionally, upper limits are set on the branching fraction in the [2mμ, 1.70]GeV/c2[2m_\mu,~1.70]\,\mathrm{GeV/c^2} dimuon mass region excluding the contribution from the intermediate ϕ(1020)\phi(1020) meson, and in the region combining all dimuon-mass intervals

    Charge-dependent curvature-bias corrections using a pseudomass method

    No full text
    International audienceMomentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy s=13\sqrt{s}=13 TeV during 2016, 2017 and 2018. The biases are determined using Zμ+μZ\to\mu^+\mu^- decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10410^{-4} GeV1^{-1} level, improves the Zμ+μZ\to\mu^+\mu^- mass resolution by roughly 20% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass
    corecore